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Qubit-flip-induced cavity mode 
squeezing in the strong dispersive 
regime of the quantum Rabi model
Chaitanya Joshi1,†, Elinor K. Irish2 & Timothy P. Spiller1

Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one 
quadrature component are reduced below the standard quantum limit. With less noise than the 
best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies 
and has already improved sensing capabilities in areas ranging from gravitational wave detection to 
biomedical applications. In this work we propose a novel technique for generating squeezed states 
of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. 
Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a 
time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden 
frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the 
standard quantum limit. The degree of squeezing and the time of generation are directly controlled by 
the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our 
protocol promises to be capable of generating a useful degree of squeezing with present experimental 
capabilities.

One of the remarkable features of quantum theory that makes its predictions different from those of classical 
physics is the concept of vacuum fluctuations or zero-point motion. An electromagnetic field, even at abso-
lute zero, has a non-zero energy in the vacuum state. This zero-point energy is associated with fluctuations in 
the quadratures of the field, such as the electric or magnetic fields or the vector potential. These vacuum fluc-
tuations manifest as quantum noise in experiments, placing a fundamental limit on the precision with which 
pairs of non-commuting observables can be measured simultaneously, as required by the Heisenberg uncertainty 
principle1.

However, for some types of measurements the effect of quantum noise can be reduced by utilising a special 
class of quantum states known as squeezed states. In order to understand the properties of squeezed light, it is 
useful to consider complex phasors ( = +ˆ ˆ ˆˆ

†X a a( )a  and = −ˆ ˆ ˆˆ
†P i a a( )a ) for the representation of a single light 

mode with creation and destruction operators denoted by ˆ†a  and â. The operators ˆ
ˆXa and ˆ ˆPa correspond to the 

dimensionless position and momentum quadratures of the field and the associated variances satisfy the 

Heisenberg uncertainty relation ∆ ∆ ≥ˆ ˆ
ˆ ˆX P 1a a

2 2
. The vacuum state of the field mode satisfies the minimum 

uncertainty relation with ∆ = ∆ =ˆ ˆ
ˆ ˆX P 1a a

2 2
, which defines the so-called standard quantum limit (SQL)1. 

Squeezed states, on the other hand, may have a variance lower than the SQL in one quadrature, reflecting reduced 
quantum noise in that quadrature component. This necessarily comes at the expense of increased fluctuations in 
the orthogonal quadrature, such that the minimum uncertainty relation is still satisfied in a squeezed state.

Over the years, the generation of squeezed light has attracted much attention for various practical applica-
tions, including high-precision quantum measurements2,3, quantum communication4, and enhanced sensitivity 
in gravitational wave detectors5. In the quantum optical domain, squeezed light has been more commonly gener-
ated using nonlinear optical processes, including degenerate parametric amplification and degenerate four-wave 
mixing1,6–9. These nonlinear processes require large optical nonlinearities, low intracavity and detection losses, 
and low phase noise10–12. Over the years, experimental progress has made it possible to generate squeezed states 
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of light in a variety of different experimental setups12, including optical parametric oscillators13, superconducting 
cavities14, and optomechanical and microwave cavities15–18.

In this work we present an alternative technique for generating intracavity squeezed states of a field mode 
dispersively coupled to a two-level system19. This protocol does not require higher order nonlinearities or strong 
pump power and can tolerate moderate levels of photon losses and imperfections. Much of the motivation for 
this work comes from the drive toward scalable quantum technology based on hybrid quantum systems, which 
incorporate qubit-based architectures for storing quantum information, photons for quantum communication, 
and nanomechanical devices for applications in quantum sensing20. In this direction, light-matter coupled quan-
tum systems have received particular attention in the bid to engineer scalable quantum platforms20–22. In these 
hybrid systems a two-level system (qubit) is coupled to a bosonic (light) field. Theoretically, the basic building 
block for describing such light-matter systems is the quantum Rabi model, which takes the following form under 
the dipole approximation23,24,

ω σ σ σ= +
Ω

+ + + .+ −ˆ ˆ ˆ ˆ ˆ ˆ ˆ
† †H a a g a a

2
( )( )

(1)zRabi

Here, â and ˆ†a  are the annihilation and creation operators for the bosonic field of frequency ω, σ σ σ= ±±
ˆ ˆ ˆi( )/2x y  

with σ̂x y z, ,  the Pauli matrices for the two-level system, Ω is the energy level splitting between the two levels, and g 
denotes the coupling strength between the bosonic mode and the two-level system (assumed to be positive).

In conventional cavity QED settings the light-matter coupling strength g is several orders of magnitude 
smaller than the transition frequencies ω, Ω. In addition, if the system is near resonance, such that ω ~ Ω, the full 
quantum Rabi model can be simplified by applying the rotating wave approximation (RWA). Under this approxi-
mation the so-called “counter-rotating” terms in Eq. (1) can be neglected, leading to the much simpler and readily 
solvable Jaynes-Cummings (JC) model25

ω σ σ σ= +
Ω

+ + .− +ˆ ˆ ˆ ˆ ˆ ˆ ˆ
† †H a a g a a

2
( )

(2)zJC

However, the validity of the quantum Rabi model is not only restricted to cavity QED setups. The original 
quantum Rabi model is a ubiquitous physical model capable of describing a wide variety of other physical sys-
tems, including trapped ions26,27, qubit-coupled nanomechanical resonators28,29, and circuit QED systems30–35. 
Circuit QED architectures are particularly interesting because it is possible to reach physical regimes where the 
light-matter coupling strength g becomes a sizeable fraction of the transition frequency of the boson field and/
or the two-level system, meaning that the RWA is no longer a valid approximation. The influence of non-RWA 
terms has been studied theoretically for some time28,36–42. However, with recent experimental advances in reach-
ing “ultra-strong” and “deep strong” coupling regimes of light and matter43–45, investigations of the full quantum 
Rabi model are attracting increasing attention27,32,46–53. It has been clearly shown that in these strongly coupled 
quantum systems the simplified JC model no longer applies and it becomes necessary to consider the full quan-
tum Rabi model to capture the relevant physics. The significance of non-RWA terms has also been elucidated 
in many-body extensions of the full quantum Rabi model, both in the equilibrium54 and non-equilibrium55,56 
settings.

Another regime of significant practical interest in which the quantum Rabi model can be substantially simpli-
fied is the so-called “dispersive regime”30. In the dispersive limit, the qubit and the boson field are far detuned 
compared to the light-matter coupling strength g, i.e. ωΩ −g . This regime is widely considered in experi-
ments, particularly in circuit QED, as it allows a non-demolition type measurement of the qubit to be made by 
probing the resonator31. Although the dispersive approximation is often applied together with the RWA31, in this 
work we consider the dispersive limit without making the RWA19,28 and show that it can be used to create 
squeezed states of the field mode.

In the dispersive regime beyond the RWA, the ground state of the quantum Rabi model exhibits one-mode 
squeezing of the boson field19, but the degree of squeezing is very small. We present a protocol which can signif-
icantly enhance the degree of squeezing present under this dispersive interaction, making use of a long-known 
result that any nonadiabatic change in the frequency of a harmonic oscillator (boson field) results in squeezing 
of the state of the oscillator57–59. The degree of squeezing is particularly pronounced if the frequency change is 
sudden60. Moreover, it is possible to use periodic sudden jumps between two frequencies to produce arbitrarily 
large squeezing of the field mode61–63. We show that this strategy can be used within the dispersive quantum Rabi 
model to generate significant squeezing of the field mode, taking advantage of the high degree of controllability 
that exists for qubits. Comparing analytical predictions using the dispersive approximation with numerical sim-
ulations of the same protocol using the full Rabi Hamiltonian, we find that, remarkably, an even larger degree of 
squeezing arises in the latter case. An analysis of the effects of noise and imperfections suggests that considerable 
squeezing could be achieved with existing experimental capabilities in circuit QED. It is worth pointing out that 
periodic sudden frequency jumps is, of course, an idealisation to any actual physical realisation. However, as long 
as the periodic frequency flips are nonadiabatic and the frequency flips are timely controlled it should still be 
possible to generate squeezed states of the boson field. We will briefly comment on this point towards the end of 
the paper.

Results
Dispersive regime: beyond the RWA. The physical setting we consider is a strongly coupled light-matter 
system modeled by the Rabi Hamiltonian of Eq. (1). Throughout this paper we focus on the dispersive regime in 
which the detuning ∆  ≡  Ω −  ω between the qubit and the cavity is large compared to their coupling, |∆ | ≫  g. As 
the qubit and cavity are far from resonance, we do not invoke the RWA to simplify the light-matter interaction; 
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this also allows us to work with values of g/ω ranging up to ≈ 0.1. Although the theory presented here may 
describe many different types of experimental systems, the dispersive limit is particularly applicable to experi-
ments in circuit QED19,30,31,64,65 and qubit-coupled nanomechanics29, which we touch on near the end of the paper.

An effective Hamiltonian in the dispersive limit may be derived19 using the unitary transformation 

= ζ σ ζ σ+ − . .− +ˆ ˆ ˆ ˆ† †

D e a a h c , where ζ ≡  g/∆ , ζ ω≡ Ω + g/( ), and h.c. denotes the Hermitian conjugate. Applying this 
transformation to the Rabi Hamiltonian and keeping terms up to second order in g, the dispersive Hamiltonian 
Hdisp is given by

ω σ σ

=

= +
Ω

+



∆
+
Ω − ∆






+ .

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

†

† †

H D H D

a a
g g

a a
2

1

2 2
( )

(3)
z z

disp Rabi

2 2
2

The eigenspectra of the dispersive Hamiltonian (3) and the full quantum Rabi model (1) are compared in 
Fig. 1. The lowest lying energy levels of each model are plotted as a function of the detuning parameter ∆  for 
two different values of the light-matter coupling strength g. As is clear from Fig. 1, the dispersive theory is a valid 
approximation to the full quantum Rabi model in the large detuning regime but breaks down as expected near 
∆  =  0. The mismatch between the two becomes more pronounced for larger values of g as ∆  →  0.

An alternative form of Eq. (3) makes the physics of the dispersive interaction more transparent. Defining the 
parameter 2φ =  g2/∆  +  g2/(2Ω −  ∆ ), the dispersive Hamiltonian may be re-expressed as

ω φσ φ σ φσ= + +




Ω
+




+ + .ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †H a a a a( 2 )

2
( )

(4)z z zdisp
2 2

In this form it is evident that the first term contains a shift in the frequency of the cavity mode that depends on 
the state of the qubit through σ̂z. This is the basis for the commonly used dispersive readout technique for super-
conducting qubits30,31: the frequency shift of the cavity, which is readily measured, is correlated with the qubit 
state. As pointed out in ref. 19, a remarkable feature of the above Hamiltonian is that a dispersive readout of the 
qubit is still possible even when the cavity field and the two-level system are coupled strongly enough that the 
RWA cannot be made. The final term of the dispersive Hamiltonian is also of interest. It takes the form of a 
one-mode squeezing interaction, the sign of which again depends on the state of the qubit through σ̂z

19. This 
suggests that the dispersive Hamiltonian may be used to generate non-classical states of the field mode, which is 
the main focus of the present work.

To begin with, we consider the degree of squeezing intrinsic to the ground state of the dispersive Hamiltonian 
and, from there, the corresponding approximate ground state of the Rabi Hamiltonian40,66–69. Noting that σ̂z is a 
constant of motion of the dispersive Hamiltonian, the ground state of Eq. (4) can be readily obtained by diagonal-
izing it in the subspace of the qubit states |↑ 〉 , |↓ 〉  which denote, respectively, the +  and −  eigenstates of σ̂z:

= ↑ ↑ + ↓ ↓
+ −H H H , (5)disp disp disp

Figure 1. Comparison between a numerical solution of the lowest energy levels of the full quantum Rabi model 
[Eq. (1)] (points) and the analytical solutions of the dispersive Hamiltonian [Eq.(4)] (solid) for (a) g/ω =  0.1 and 
(b) g/ω =  0.2. Note that Ω/ω =  1 +  ∆ /ω. Our choice to intentionally leave out the point ∆  =  0 is based on the 
fact that the dispersive approximation breaks down at ∆  =  0. It is, therefore, only meaningful to compare the 
predictions of the full quantum Rabi model and the dispersive theory away from ∆  =  0.
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where

ω φ φ φ= ± ±




Ω
+




± + .± ˆ ˆ ˆ ˆ† †H a a a a( 2 )

2
( )

(6)disp
2 2

To diagonalize the Hamiltonians ±Hdisp we define a unitary transformation

= ↑ ↑ + ↓ ↓+ −
ˆ ˆ ˆS S r S r( ) ( ) , (7)

where =±
−± ±ˆ ˆ ˆ†

S r e( ) r a r a( )/22 2

 is a unitary squeezing operator1. Under the action of this unitary transformation the 
annihilation and creation operators ˆ ˆ†a a,  transform as

= +± ± ± ±
ˆˆ ˆ ˆ ˆ

† †S r aS r a r a r( ) ( ) cosh sinh , (8)

= +± ± ± ±
ˆ ˆ ˆ ˆ ˆ

† † †S r a S r a r a r( ) ( ) cosh sinh , (9)

where the squeezing parameter is defined as

φ

ω φ

ω

ω φ

= −




±

±






=



 ±





.

±
−r

1

2
tanh

2

2

1

4
ln

4 (10)

1

After the transformation Ŝ is applied, the Hamiltonian of Eq. (5) takes the diagonal form

= ↑ ↑ + ↓ ↓
∼ ∼ ∼+ −
H H H , (11)disp disp disp

where

ω ω φ φ

=

= ± ±




Ω
+




.

∼± ±ˆ ˆ

ˆ ˆ

†

†

H S H S

a a( 4 )
2 (12)

disp disp

The resulting Hamiltonian is that of a harmonic oscillator whose frequency shift is correlated with the qubit 
state |↑ 〉  or |↓ 〉 . In order for the shifted oscillator frequency to remain real, it is necessary to have ω ≥  |4φ| or, 

equivalently, ω ω≤ Ω − Ωg /42 2 . This places a further restriction on the magnitude of the coupling strength g, 
which is in addition to the requirement that g ≪  |∆ | in order for the truncation at g( )2  used in deriving Eq. (3) 
to be valid. The above condition follows simply from requiring the expression under the square root in Eq. (12) to 
be positive. Violation of the condition effectively signals the breakdown of the dispersive approximation, which is 
based on second-order non-degenerate perturbation theory in the interaction term, i.e. g is assumed to be small. 
This treatment is valid for both Ω ≫  ω and Ω ≪  ω but diverges near resonance. We would like to emphasise that 
this condition is not directly related to the existence of a ‘critical point’ in the ultrastrong coupling regime of the 
quantum Rabi model68,69. It is only to do with the validity of the dispersive approximation.

The eigenstates of 
∼
Hdisp are simply given by Ψ = ↑

∼ +
n

n

disp

,
 and Ψ = ↓ = …
∼ −

n n( 0, 1, 2, )
n

disp

,
. The dis-

persive Hamiltonian (5) consequently has the corresponding eigenstates

Ψ = Ψ .
∼±
±

Ŝ
(13)

n n

disp
,

disp

,

Hence the ground states of the dispersive Hamiltonians ±Hdisp take a separable form with the cavity field in a 
squeezed vacuum state.

Since a unitary transformation leaves eigenvalues unchanged, the eigenvalues of the dispersive Hamiltonian 
may be taken as a direct approximation to the eigenvalues of the full quantum Rabi model. However, the same is 
not true of the eigenstates70. The dispersive Hamiltonian is related to the full quantum Rabi Hamiltonian by two 
successive unitary transformations. The eigenstates of the original quantum Rabi model (1) are related to the 
eigenstates of the dispersive Hamiltonian (5) through the unitary transformations Ŝ and D̂:

Ψ Ψ = Ψ .
∼± ±
±

 ˆ ˆ ˆD DS
(14)

n n n

Rabi
,

disp
,

disp

,

To maintain consistency with the dispersive Hamiltonian (5), which is valid to second order in g, we expand 
the operator D̂ to first order in ζ ζ,  (which are proportional to g):

ζ σ ζ σΨ + + − . . Ψ .
∼± − + ±

≃ �ˆ ˆ ˆ ˆ ˆ† †a a h c S(1 )
(15)

n n

Rabi
,

disp

,
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For Ψ = ↓ ↑
∼ 

0 ,disp

0,
, the corresponding approximate eigenstates of the quantum Rabi model are

ζ ζΨ = ↓ + − ↑ .−
− − − −

ˆ ˆS r S r r r( ) 0 ( )( cosh sinh ) 1 (16)Rabi
0,

ζ ζΨ = ↑ + − ↑+
+ + + +

ˆ ˆS r S r r r( ) 0 ( )( cosh sinh ) 1 , (17)Rabi
0,

For ∆  >  0 the state Ψ −
Rabi
0,  is an approximation to the ground state of the Rabi Hamiltonian; we have numeri-

cally confirmed this for the parameter values used throughout the work. The state Ψ +
Rabi
0,  is a little more intriguing 

as it corresponds to one of the higher excited states of the quantum Rabi model; which excited state depends on 
the value of ∆ . We have numerically confirmed that for values of g/ω ≤  0.2, Ψ +

Rabi
0,  is an approximation to the nth 

excited state when n =  4 (∆  =  2), n =  7 (∆  =  5) and n =  12 (∆  =  10).
These states are not separable as the dispersive eigenstates are; rather, they represent entangled states of the 

qubit and the cavity field. What is more, only the first term in each superposition, albeit the dominant one, con-
tains a squeezed vacuum in the field. The second term is a squeezed number or Fock state, which is an even more 
highly nonclassical state than the squeezed vacuum. Nevertheless, a squeezed vacuum state of the field may be 
recovered by making a projective measurement onto the appropriate qubit state. The differences between the 
dispersive eigenstates and the approximate Rabi eigenstates have important consequences for the generation of 
squeezed states of the field, as we shall see later on.

In order to quantify the degree of squeezing of the cavity field present in the the dispersive and Rabi ground 
states, we introduce dimensionless position and momentum quadratures for the mode â:

= +

= − .

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ
†

ˆ
†

X a a

P i a a

( )

( ) (18)

a

a

First we consider the ground state in each qubit subspace of the dispersive Hamiltonian, ↑ ↓Ŝ 0 , , for which 
the variances in the position and momentum quadratures are

ω

ω φ
〈∆ 〉 =

±
ˆ

ˆX
4 (19)

a

2

ω φ

ω
〈∆ 〉 =

±
.ˆ

ˆP
4

(20)a

2

Alternatively, in terms of the squeezing parameter given by Eq. (10) the variances may be written as

〈∆ 〉 = ±ˆ
ˆX e (21)a

r2 2

〈∆ 〉 = .
− ±ˆ

ˆP e (22)a
r2 2

It is clear that, for φ >  0, i.e. ∆  >  0, the squeezing parameter r− (which corresponds to the ground state of 
Equation (11)) results in noise reduction beyond the standard quantum limit in the momentum quadrature and 
enhanced fluctuations in the position quadrature. The reverse is true for squeezing parameter r+. Hence the quad-
rature of squeezing depends on the sign of σ̂z .

In experiments the degree of squeezing   is commonly expressed in decibels (dB), calculated as 

 =




−









 ∆ ∆
















ˆ ˆ
ˆ ˆX Pmax 0, 10 log min ,a a10

2 2
. The degree of squeezing present in the ground states of both 

qubit subspaces of the dispersive Hamiltonian ↓ ↑Ŝ 0 ,  and in the approximate ground state of the Rabi 
Hamiltonian Ψ −

Rabi
0,  is plotted in Fig. 2 as a function of the light-matter coupling g for three different values of the 

detuning ∆ . Here and in what follows we concentrate on the case ∆  >  0, which gives both a larger degree of 
squeezing and a larger frequency shift of the cavity field for a given value of |∆ |. Figure 2 shows that the degree of 
squeezing in the ground state of the dispersive Hamiltonian increases with the coupling g. This is expected since 
the parameter φ which controls the degree of squeezing scales as g2. Similarly, the squeezing is reduced as the 
detuning ∆  increases. Hence there is a tradeoff between the validity of the dispersive approximation, which 
requires |∆ | ≫  g, and the amount of squeezing that is present in the ground state. In any event, the degree of 
squeezing of the ground state of the dispersive Hamiltonian (5) is not large,  < .0 15 dB. It can be easily verified 
that the squeezing parameter |r−| ≥  |r+|, which is why the degree of squeezing of ↓Ŝ 0  is marginally higher than 
the degree of squeezing of ↑Ŝ 0 .

For the sake of comparison the degree of squeezing in the exact ground state of the full quantum Rabi model 
(1), calculated numerically, is also shown in Fig. 2. From the figure it is evident that as the parameter φ decreases 
both the dispersive ground state ↓Ŝ 0  and the approximate Rabi ground state Ψ −

Rabi
0,  better approximate the 

exact ground state of the quantum Rabi model in terms of capturing the degree of squeezing  . The degree of 
squeezing in the approximate and the exact ground states of the quantum Rabi model is smaller than the degree 
of squeezing present in the dispersive states ↓ ↑Ŝ 0 , . This can be understood by examining the form of Eq. (16), 
which is a superposition of a squeezed vacuum state ↓−Ŝ r( ) 0  and a squeezed n =  1 Fock state ↑−Ŝ r( ) 1 . For 
n >  0, the Fock states |n〉  are not states of minimum uncertainty; their variances are given by 
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∆ = ∆ = +ˆ ˆ
ˆ ˆn X n n P n n2 1a a

2 2
.  Therefore the state −Ŝ r( ) 1  has variances ∆ = −ˆ

ˆX e3a
r2 2  and 

∆ =
− −ˆ

ˆP e3a
r2 2 . Since the n =  0 and n =  1 states are associated with orthogonal qubit components, there is no 

coherence between them and the overall variances are equal to the sums of the variances of the two squeezed Fock 
states. As a consequence, both quadrature variances are increased over those of the squeezed vacuum and hence 
the degree of squeezing of the overall state is reduced.

Squeezing generation through sudden qubit flips. In the previous section we evaluated the degree of 
squeezing in the respective ground states of the dispersive Hamiltonian and the full quantum Rabi model. 
Unfortunately, the degree of squeezing   is relatively low even for the largest values of the light-matter coupling 
strength g for which the dispersive approximation holds. In this section we outline a strategy to significantly 
improve the amount of squeezing of the oscillator mode. The basis of our protocol is a scheme detailed in ref. 61, 
which uses sudden changes in the frequency of a harmonic oscillator to generate arbitrarily strong squeezing of 
the oscillator state. We show that this scheme can be directly realised within the dispersive Hamiltonian, using the 
interaction of the qubit with the field mode to create the required frequency shifts. The use of a dispersively cou-
pled qubit distinguishes our proposal from that of ref. 63, in which the repeated frequency shift protocol of ref. 61 
was shown to produce squeezed states in a nonlinear superconducting oscillator.

To begin with we re-express the Hamiltonian (5) in terms of position and momentum coordinates for mode â:

ω
ω

=





+





ˆ ˆ ˆa x i p
1

2
2

2
,

(23)

ω
ω

=





−





ˆ ˆ ˆ†a x i p
1

2
2

2
,

(24)

so that the dispersive Hamiltonian of Eq. (5) can be written as

ω ω

ω ω

=




+






↑ ↑ +





+






↑ ↓

= ↑ ↑ + ↓ ↓ .

+ −

+ + + − − −

ˆ
ˆ

ˆ
ˆ

ˆ ˆ ˆ ˆ† †

H
p

x
p

x

a a a a

2

1

2 2

1

2

(25)

disp

2
2 2

2
2 2

Within each qubit subspace the Hamiltonian of the field takes the form of a harmonic oscillator of unit mass 
and shifted oscillation frequency ω ω ωφ= ±± 42 2 . The lowering and raising operators associated with the 
frequency-shifted potentials are defined as

Figure 2. Degree of squeezing   as a function of the light-matter coupling strength g for the dispersive 
eigenstates Ψ +

disp
0,  (thin solid, blue)and Ψ −

disp
0,  (thick solid, red), the approximate ground state of the  

quantum Rabi model Ψ −
Rabi
0,  (crosses, pink), and the numerically determined ground state of the quantum  

Rabi model ΨRabi
0  (filled-dots, black) for (a) ∆ /ω =  2, (b) ∆ /ω =  5, and (c) ∆ /ω =  10.
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ω
ω

=





+






± ±

±

ˆ ˆ ˆa x i p
1

2
2

2
,

(26)

ω
ω

=





−






.± ±

±

ˆ ˆ ˆ†a x i p
1

2
2

2

(27)

Note that the modes defined by 
±â  are not independent: both sets of operators depend on the same underlying 

position and momentum coordinates, so that ≠+ −ˆ ˆa a[ , ] 0. Rather, the frequency-shifted mode operators are 

related to the original oscillator mode by =± ± ±ˆ ˆ ˆ ˆ
†

a S r aS r( ) ( ).
Now we imagine a scenario in which the system is initialized in the ground state of the dispersive Hamiltonian 

|Ψ 〉 = | 〉|↓〉−
ˆ

S 0disp
0, . At time t =  0 the state of the qubit |ψq〉  is flipped suddenly:

ψ = ↓ <t t( ) , 0 (28)q

ψ| 〉 = |↑〉 ≥ .t t( ) , 0 (29)q

The orthogonality of the qubit states |↓ 〉  and |↑ 〉  implies that prior to t =  0 the effective Hamiltonian of the field 
mode is ω− − −ˆ ˆ†a a , whereas for t ≥  0 the mode evolves under the effective Hamiltonian ω+ + +ˆ ˆ†a a . In other words, 
since the qubit state determines the frequency shift of the mode, flipping the qubit results in a sudden change in 
the frequency of the harmonic oscillator.

It has been shown that a suitably timed sequence of sudden frequency changes is capable of generating arbi-
trarily large squeezing of a field mode61. In our coupled light-matter system, the dispersive interaction together 
with qubit flips provides the mechanism for changing the frequency of the field mode. For the sake of complete-
ness we briefly summarize the main steps of the protocol developed in ref. 61 within the context of our system.

•	 We assume that for t <  0 the system is prepared in the ground state of the dispersive Hamiltonian 
|Ψ 〉 = ↓ = ↓−

−Ŝ 0 0disp
0, , where |0−〉  is defined as the ground state of the frequency-shifted oscillator 

potential ω− − −ˆ ˆ†a a .
•	 At t =  0 the qubit is suddenly flipped to its excited state |↑ 〉 . Immediately following the qubit flip, although the 

expectation values of x̂ and p̂ for the field remain unchanged, the field state is squeezed relative to the new 
potential ω+ + +ˆ ˆ†a a .

•	 The joint state evolves under the Hamiltonian ω ↑ ↑+ + +ˆ ˆ†a a  for a time duration δT+.
•	 After the time delay δT+, the qubit is suddenly flipped back to its ground state |↓ 〉 . This creates a second sud-

den frequency jump from ω+ →  ω−, following which the state of the field is squeezed with respect to the 
potential ω− − −ˆ ˆ†a a .

•	 The first cycle of the protocol finishes with allowing the joint state to evolve under the Hamiltonian 
ω ↓ ↓− − −ˆ ˆ†a a  for a duration δT−.

•	 By carefully choosing δT± and repeating the above steps N times very strong squeezing of the field mode â can 
be generated.

These steps are illustrated in Fig. 3. As long as we are working within the dispersive Hamiltonian, the above 
protocol is directly analogous to the harmonic oscillator with time-dependent frequency envisioned by Janszky 
and Adam61. Following their Heisenberg-picture analysis, we arrive at the following expressions for the 
time-evolved operators δ δ δ δ− − + − − +

ˆ ˆ†a T T a T T( , ), ( , ) after one cycle of the protocol:

δ δ δ= ω δ

− − + − +

−
− −ˆ ˆa T T a T e( , ) ( ) , (30)

i T

δ δ δ= .
ω δ

− − + − +
− −ˆ ˆ† †a T T a T e( , ) ( ) (31)

i T

The operators for the ω− potential immediately following the second qubit flip are given by

δ ω δ ω δ= − − − + −
− + + + − + + + − − −

ˆ ˆ ˆ ˆ†a T T a i T u a u a( ) cos( ) ( 0) sin( )[ ( 0) ( 0)], (32)
2 2

δ ω δ ω δ= − + − + −
− + + + − + + + − − −

ˆ ˆ ˆ ˆ† † †a T T a i T u a u a( ) cos( ) ( 0) sin( )[ ( 0) ( 0)], (33)
2 2

where − −
− −

ˆ ˆ†a a( 0), ( 0) are the initial creation and destruction operators before the start of the protocol and 
ω ω ω ω= ±± + − + −u ( )/(2 )2 2 . The time evolved operators δ δ

− + − +
ˆ ˆ†a T a T( ), ( ) depend crucially on the choice of δT+. 

If Zδ π ω= ∈
+ +

T m m/ ( ) no squeezing is generated by the protocol. Maximal squeezing is obtained when 
δT+ =  (2m +  1)π/2ω+. Likewise, if the protocol is to be further repeated it is critical to choose 
δT− =  (2m +  1)π/2ω−. From now on we therefore fix δT± =  π/2ω±. The time evolved position and momentum 
quadratures defined with respect to the mode with frequency ω− then become
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δ δ δ δ δ δ= +− − + − − + − − +
ˆ ˆ ˆ†X T T a T T a T T( , ) ( ( , ) ( , )), (34)

δ δ δ δ δ δ= − .− − + − − + − − +
ˆ ˆ ˆ†P T T i a T T a T T( , ) ( ( , ) ( , )) (35)

The corresponding variances of the quadrature operators are given by

δ δ
ω

ω
∆ =









− − +
+

−

X̂ T T( , ) ,
(36)

2
2

δ δ
ω

ω
∆ =












− − +

−

+

P̂ T T( , ) ,
(37)

2

2

which clearly illustrates that the protocol decreases quantum noise beyond the standard quantum limit in the 
momentum quadrature at the expense of increased fluctuations in the position quadrature of the field mode. This 
protocol can be repeated to produce even greater squeezing: after N cycles the variances are given by 

δ δ∆ − − +X̂ T T( , )
N2  and δ δ∆ − − +P̂ T T( , )

N2 .
Unlike the proposal in ref. 61, the time-dependent frequency changes in our system are achieved via an effec-

tive interaction with a qubit. It makes sense, therefore, to consider the squeezing relative to the bare cavity mode 
with frequency ω and lowering and raising operators ˆ ˆ†a a, . Following one cycle of the protocol, the time-evolved 
quadrature operators for the bare cavity mode δ δ δ δ

− + − +
ˆ ˆ

ˆ ˆX T T P T T( , ), ( , )a a  are related to the operators for the 
−

â  
mode by

δ δ δ δ=
− + − − +

−ˆ ˆ
ˆX T T e X T T( , ) ( , ), (38)a

r

δ δ δ δ= .
− +

−

− − +
−ˆ ˆ

ˆP T T e P T T( , ) ( , ) (39)a
r

After N cycles of the protocol the variances in the position and momentum quadratures of the bare cavity 

mode are given by δ δ∆ − − +
− ˆe X T T( , )r N2 2  and δ δ∆−

− − +
− ˆe P T T( , )r N2 2 , respectively. In the calculations that 

follow the degree of squeezing   is always computed with respect to the bare cavity mode.
Figure 4 compares the degree of squeezing present in the ground state Ψ −

disp
0,  with that obtained after one cycle 

of the protocol, as a function of the coupling strength g/ω. It can be clearly seen that the protocol using sudden 
frequency flips can significantly increase the degree of squeezing of the field mode over that naturally present in 
the ground state.

The foregoing discussion has been based on the dispersive Hamiltonian and its eigenstates. However, in our 
system the dispersive Hamiltonian arises as an approximation to the full Rabi Hamiltonian. As the squeezing 

Figure 3. Schematic of the dispersive squeezing protocol outlined in the text. Heavy dashed arrows 
represent qubit flips, while solid lines indicate time evolution under the corresponding oscillator Hamiltonian. 
The ellipses illustrate the state of the field before and after each qubit flip. One full cycle plus the first step of a 
second is shown here.
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protocol involves manipulating the state of the system, working with the Rabi Hamiltonian itself will give differ-
ent results than working with the dispersive Hamiltonian. In order to analyze the outcome of the protocol using 
the Rabi Hamiltonian, it is useful to work in the Schrödinger picture rather than the Heisenberg picture used 
previously.

In the Schrödinger picture, one cycle of the protocol based on the dispersive Hamiltonian as described above 
results in the state

δ δ σ σΨ = ↓

= ↓ .

δ δ

δ δ

− +

− −
−

− −
−

− +

−
−

+
+

ˆ ˆ ˆ

ˆ

T T e e S r

e e S r

( , ) ( ) 0

( ) 0 (40)

iH T
x

iH T
x

iH T iH T

disp
disp disp

disp disp

The protocol may be carried out similarly using the Rabi Hamiltonian. For simplicity, we assume that the ini-
tial state for the Rabi protocol is the ground state of the Rabi Hamiltonian. As is evident from the approximate 
solution in Eq. (16), this state is not an eigenstate of the qubit operator σ̂z; rather than being a separable state of 
qubit and field with the qubit in |↓ 〉 , the Rabi ground state has a component along |↑ 〉 . However, provided that the 
parameter regime is chosen such that the dispersive approximation holds, the |↑ 〉  component is small.

As in the dispersive case, the first step of the protocol is to flip the state of the qubit by applying the σ̂x operator. 
Of course, this does not result in a state that is purely along |↑ 〉 , but again the error induced is small. The flipped 
state is now allowed to evolve under the full Rabi Hamiltonian for a time δT+. Following this evolution, the qubit 
is flipped again and the state evolves, again under the full Rabi Hamiltonian, for a time δT−. The evolution time 
intervals δT± remain the same as in the dispersive case, to a good approximation. This is because the evolution time 
is related to the differences in energy eigenvalues, which are effectively the same in the dispersive and Rabi cases 
provided that the parameters are chosen suitably. The resultant state after one cycle of the protocol is then given by

δ δ σ σΨ = Ψ .
δ δ

− +
− −− +ˆ ˆT T e e( , ) (41)

iH T
x

iH T
xRabi Rabi

0Rabi Rabi

Of course, the protocol may then be repeated multiple times in a similar fashion. Figure 5 shows the results of 
numerical calculations of the degree of squeezing   that is produced as a function of the number of cycles N for 
both the dispersive and Rabi cases. It is clear that in both cases the degree of squeezing increases linearly with the 
number of cycles. The field state produced after 15 cycles of the Rabi protocol is illustrated in Fig. 6, which shows 
Wigner function plots of the renormalised field components associated with the |↓ 〉  (a) and |↑ 〉  (b) qubit states. 
We define the Wigner function for the field mode to take the following form

α
π

α ρ α=



 −






ˆ ˆ
† ˆ ˆ†

W D D( )
2

Tr ( ) ( )( 1) ,
(42)

a a
Rabi

where α α α= −ˆ ˆ ˆ† ⁎D a a( ) exp( ) is the displacement operator, ρRabi is the density matrix corresponding to the 
cavity field and α =  αr +  iαm is a complex parameter71. The |↓ 〉  component of the field closely resembles a squeezed 
vacuum state, similar to that resulting from the dispersive protocol. More interesting is the |↑ 〉  component, which 
is a complicated and strongly nonclassical state that displays multiple peaks and several negative regions in its 
Wigner function. It should be noted, however, that the amplitude of this component of the overall state is quite 
small, so while it could in principle be probabilistically selected by a projective measurement on the |↑ 〉  qubit 
state, the likelihood of obtaining this state is small. For instance, after 15 cycles of the Rabi protocol the probability 
associated with the |↓ 〉  component of the field is close to unity (≈ 0.993), while the probability for the |↑ 〉  compo-
nent of the field to be populated is almost negligible (≈ 0.007).

Remarkably, Fig. 5 shows that the protocol using the Rabi Hamiltonian produces considerably more squeezing 
per cycle (approximately twice as much, for these parameters) than the “ideal” dispersive case. This is particularly 
surprising since the ground state of the quantum Rabi model shows less squeezing than the dispersive ground 

Figure 4. Degree of squeezing obtained after one cycle of the protocol in the ideal dispersive case (open 
squares), as a function of the coupling strength g/ω. For comparison the squeezing present in the ground state 
Ψ
−

ispd
0,  is also shown (solid). Other physical parameters include: ∆ /ω =  2, Ω/ω =  1 +  ∆ /ω.
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state, which can be attributed to the higher variance of the mode state associated with the |↑ 〉  state of the qubit as 
discussed previously. Calculations show that the |↓ 〉  component of the state is squeezed much more strongly after 
one cycle of the Rabi protocol than predictions based on the dispersive analysis would suggest. The variance in ˆ ˆPa 
of the |↑ 〉  state is also reduced by the squeezing protocol, albeit not below the standard quantum limit of 

∆ =ˆ
ˆP 1a

2
. However, the overall increase in squeezing in the Rabi case can be attributed to the very large degree 

of squeezing of the |↓ 〉  component. Clearly, although the dispersive theory gives good predictions for the energies 
and the degree of squeezing in the ground state in the quantum Rabi model, it is not particularly good at predict-
ing the results from the Rabi squeezing protocol. The origin of this discrepancy can be traced back to the pertur-
bative nature of the dispersive approximation: the energies are corrected to a higher order in g than the eigenstates. 
This counterintuitive result highlights the need to be cautious when applying the dispersive approximation in 
situations where the state of the system is being manipulated70.

Imperfections in the protocol. In a realistic setting the protocol presented in the previous section will 
suffer from losses and imperfections. Qubit dephasing and relaxation, cavity losses, timing jitter, and the inability 
to instantaneously flip the state of the qubit will all affect the outcome of the protocol. We briefly discuss each of 
these sources of error with an eye toward circuit QED experiments, but their relative contributions will depend 
on the particular experimental implementation.

In the dispersive version of the protocol, the qubit is always in one of its eigenstates, meaning that the protocol is 
unaffected by dephasing and only the energy relaxation time T1 needs to be considered. The Rabi case is a little more 
complicated and qubit dephasing may contribute to noise. However, it is important to note that the qubit need only 
remain coherent over the evolution time interval δT± rather than throughout the full N cycles of the protocol. To 
take some numbers relevant to superconducting circuit QED experiments, choosing a cavity frequency ω ~ 1 GHz 
and a coupling strength g =  0.1ω gives δT± on the order of nanoseconds. Given that superconducting qubits are now 
routinely achieving relaxation and dephasing times of several tens of microseconds32–35, it is clear that qubit losses 
are not expected to be a limiting factor for the protocol or the degree of squeezing that can be achieved.

The loss of photons from the cavity has a more severe effect because the state of the field is built up over succes-
sive cycles and therefore must retain coherence over the full N cycles of the protocol. To incorporate photon losses 
in the squeezing protocol we use a standard master equation approach1, assuming that during the time intervals 
δT± the field mode couples to a zero temperature reservoir with damping rate Γ . Figure 7 shows the results of a 
master equation simulation with Γ  =  0.01/δT+. In the presence of photon loss the degree of squeezing is no longer 
linear in the number of cycles N; the additional squeezing generated by another round of the protocol begins to 
saturate as N increases. However, a substantial increase in squeezing over that present in the initial state can still 

Figure 5. Degree of squeezing S for the dispersive (red, triangles) and Rabi (black, circles) versions of the 
squeezing protocol, as a function of the number of cycles N. Other physical parameters include: g/ω =  0.1, ∆ 
/ω =  2, Ω/ω =  1 +  ∆ /ω.

Figure 6. Wigner functions of the cavity field following 15 cycles of the squeezing protocol using the Rabi 
Hamiltonian. (a) shows the component of the field along the |↓ 〉  qubit state and (b) shows the |↑ 〉  component. 
In each case the amplitude of the field has been renormalised to 1. Other physical parameters include: g/ω =  0.1, 
∆ /ω =  2, Ω/ω =  1 +  ∆ /ω.
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be obtained. It is worth noting that this value of Γ  corresponds to a cavity Q of about 150, which is two orders of 
magnitude less than Q-factors routinely achieved for microwave resonators in circuit QED29,32,33 and similar to 
the value recently measured for a qubit-coupled nanomechanical resonator29.

The protocol also requires carefully designed time delays to ensure maximum squeezing of the field mode. In order 
to model the effect of inaccuracies in timing, we add a random offset ε, chosen from a normal distribution with zero 
mean and standard deviation δσ, to each time delay δT±. The average degree of squeezing of the field mode   is 
evaluated by taking an ensemble average over multiple runs of the N-cycle protocol. Figure 7 shows the average degree 
of squeezing   when photon losses and random time delay are incorporated in our protocol. When the error in 
timing is on the order of 1%, the timing jitter has little effect on the degree of squeezing. However, larger timing errors 
(on the order of 10%) dramatically reduce the degree of squeezing produced. Hence the ability to control the timing of 
qubit flips to a reasonably precise degree will be important for experimental implementations of our protocol.

The foregoing calculations have relied on the assumption of instantaneous flips of the qubit state, which pro-
duce sudden changes in the frequency of the oscillator. A sudden frequency change is of course an idealization for 
a finite but small switching time t̃ . As long as ω ω ω ω−

+ − + −
t̃ min( , )/ 2 2 , a sudden frequency change from 

ω+ →  ω− is a good approximation61. It should be pointed out that ∼t̃ g1/ ; therefore the requirement for very 
small values of t̃  can be relaxed by decreasing the light-matter coupling g and increasing the number of cycles N 
to achieve a similar degree of squeezing of the cavity field. Moreover, modifications to the sudden frequency shift 
scheme of ref. 61 have been discussed in the literature. The case of a sinusoidal frequency modulation was studied 
in ref. 72, and a Fourier-modified Janszky-Adam scheme for improved nonadiabatic generation of squeezed pho-
tons was proposed in ref. 73. While these schemes are not as efficient as the original sudden jump protocol, they 
are less demanding from an experimental standpoint and still produce significant squeezing of the cavity field.

Discussion
Squeezed light was historically generated through nonlinear optical interactions, but over the years the field 
has expanded and different physical systems are currently pursued in this direction, including superconducting, 
microwave and optomechanical cavities. To put things in perspective, impressive experimental advancements 
have achieved strong squeezing in optical parametric oscillators (12.7 dB)13 and microwave fields (10 dB)14. In 
this work, we have proposed a new scheme of generating squeezing of a boson field interacting with a qubit under 
the strong dispersive regime of the quantum Rabi model. Under this interaction, the dispersive frequency shift 
allows the frequency of the cavity mode to be changed by flipping the state of the qubit. A protocol based on a 
series of suitably timed sudden frequency jumps can be used to produce an arbitrarily large degree of squeezing in 
the absence of noise. Even in the presence of a realistic level of noise and experimental imperfections, the degree 
of squeezing produced under this protocol is comparable to the level of squeezing reported in refs 3 and 15 and, 
thus, our method of squeezed state generation may find applications in ultra-precise sensing and measurements. 
We would like to point out that there is no fundamental limit on the maximum degree of squeezing achievable 
through our protocol, and it will be decided by the limitations of an actual physical implementation. One possible 
advantage of our method of squeezing generation compared to the use of a parametric amplifier and/or other 
nonlinearity based methods is that under our protocol the degree of squeezing and the time of generation are 
directly controlled by the number of frequency shifts applied.
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