149 research outputs found

    On the nature of the hard X-ray source IGR J2018+4043

    Get PDF
    We found a very likely counterpart to the recently discovered hard X-ray source IGR J2018+4043 in the multi-wavelength observations of the source field. The source, originally discovered in the 20-40 keV band, is now confidently detected also in the 40-80 keV band, with a flux of (1.4 +/- 0.4) x 10(-11) erg cm(-2) s(-1). A 5 ks Swift observation of the IGR J2018+4043 field revealed a hard point-like source with the observed 0.5-10 keV flux of 3.4(+0.7)(-0.8) x 10(-12) erg cm(-2) s(-1) (90% confidence level) at alpha = 20h18m38.55s, delta = +40d41m00.4s (with a 4.2" uncertainty). The combined Swift-INTEGRAL spectrum can be described by an absorbed power-law model with photon index gamma = 1.3 +/- 0.2 and N_H = 6.1(+3.2)(-2.2) x 10(22) cm(-2). In archival optical and infrared data we found a slightly extended and highly absorbed object at the Swift source position. There is also an extended VLA 1.4 GHz source peaked at a beam-width distance from the optical and X-ray positions. The observed morphology and multiwavelength spectra of IGR J2018+4043 are consistent with those expected for an obscured accreting object, i.e. an AGN or a Galactic X-ray binary. The identification suggests possible connection of IGR J2018+4043 to the bright gamma-ray source GEV J2020+4023 (3EG J2020+4017) detected by COS B and CGRO EGRET in the gamma-Cygni SNR field.Comment: 5 pages, 3 figures, uses emulateapj styl

    Protocol for Monitoring Aquatic Invertebrates of Small Streams in the Heartland Inventory & Monitoring Network, Version 2.1

    Get PDF
    Executive Summary The Heartland Inventory and Monitoring Network (HTLN) is a component of the National Park Service’s (NPS) strategy to improve park management through greater reliance on scientific information. The purposes of this program are to design and implement long-term ecological monitoring and provide information for park managers to evaluate the integrity of park ecosystems and better understand ecosystem processes. Concerns over declining surface water quality have led to the development of various monitoring approaches to assess stream water quality. Freshwater streams in network parks are threatened by numerous stressors, most of which originate outside park boundaries. Stream condition and ecosystem health are dependent on processes occurring in the entire watershed as well as riparian and floodplain areas; therefore, they cannot be manipulated independently of this interrelationship. Land use activities—such as timber management, landfills, grazing, confined animal feeding operations, urbanization, stream channelization, removal of riparian vegetation and gravel, and mineral and metals mining—threaten stream quality. Accordingly, the framework for this aquatic monitoring is directed towards maintaining the ecological integrity of the streams in those parks. Invertebrates are an important tool for understanding and detecting changes in ecosystem integrity, and they can be used to reflect cumulative impacts that cannot otherwise be detected through traditional water quality monitoring. The broad diversity of invertebrate species occurring in aquatic systems similarly demonstrates a broad range of responses to different environmental stressors. Benthic invertebrates are sensitive to the wide variety of impacts that influence Ozark streams. Benthic invertebrate community structure can be quantified to reflect stream integrity in several ways, including the absence of pollution sensitive taxa, dominance by a particular taxon combined with low overall taxa richness, or appreciable shifts in community composition relative to reference condition. Furthermore, changes in the diversity and community structure of benthic invertebrates are relatively simple to communicate to resource managers and the public. To assess the natural and anthropogenic processes influencing invertebrate communities, this protocol has been designed to incorporate the spatial relationship of benthic invertebrates with their local habitat including substrate size and embeddedness, and water quality parameters (temperature, dissolved oxygen, pH, specific conductance, and turbidity). Rigid quality control and quality assurance are used to ensure maximum data integrity. Detailed standard operating procedures (SOPs) and supporting information are associated with this protocol

    Integrated modelling of cost-effective siting and operation of flow-control infrastructure for river ecosystem conservation

    Full text link
    Wetland and floodplain ecosystems along many regulated rivers are highly stressed, primarily due to a lack of environmental flows of appropriate magnitude, frequency, duration, and timing to support ecological functions. In the absence of increased environmental flows, the ecological health of river ecosystems can be enhanced by the operation of existing and new flow-control infrastructure (weirs and regulators) to return more natural environmental flow regimes to specific areas. However, determining the optimal investment and operation strategies over time is a complex task due to several factors including the multiple environmental values attached to wetlands, spatial and temporal heterogeneity and dependencies, nonlinearity, and time-dependent decisions. This makes for a very large number of decision variables over a long planning horizon. The focus of this paper is the development of a nonlinear integer programming model that accommodates these complexities. The mathematical objective aims to return the natural flow regime of key components of river ecosystems in terms of flood timing, flood duration, and interflood period. We applied a 2-stage recursive heuristic using tabu search to solve the model and tested it on the entire South Australian River Murray floodplain. We conclude that modern meta-heuristics can be used to solve the very complex nonlinear problems with spatial and temporal dependencies typical of environmental flow allocation in regulated river ecosystems. The model has been used to inform the investment in, and operation of, flow-control infrastructure in the South Australian River Murray.<br /

    The binary nature of the Galactic Centre X-ray source CXOGC J174536.1-285638

    Get PDF
    X-ray and near-IR surveys of the central 2x0.8 degrees of the Galactic Centre have revealed a population of X-ray bright massive stars. However, the nature of the emission, originating in a wind collision zone or via accretion onto a compact object, is uncertain. In order to address this we investigated the nature of the luminous X-ray source CXOGC J174536.1-285638. An analysis of the near-IR spectrum with a non-LTE model atmosphere code demonstrated that it was an highly luminous WN9h star, for which comparison to evolutionary tracks suggests an age of 2-2.5Myr and an initial mass of ~110Msun. The X-ray properties of CXOGC J174536.1-285638 resemble those of 3 of the WN9h stars within the Arches cluster and in turn other very massive WNLh colliding wind binaries. Simple analytical arguments demonstrate consistency between the X-ray emission and a putative WN9h+mid O V-III binary. However, we may not exclude a high mass X-ray binary interpretation, which, if correct, would provide a unique insight into the (post-SN) evolution of extremely massive stars. Irrespective of the nature of the secondary, CXOGC J174536.1-285638 adds to the growing list of known and candidate WNLh binaries. Of the subset of WNLh stars subject to a radial velocity survey, we find a lower limit to the binary fraction of ~45%; of interest for studies of massive stellar formation, given that they currently possess the highest dynamically determined masses of any type of star. [ABRIDGED]Comment: 9 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Effects of adaptation to sea water, 170% sea water and to fresh water on activities and subcellular distribution of branchial Na + −K + -ATPase, low- and high affinity Ca ++ -ATPase, and ouabain-insensitive ATPase in Gillichthys mirabilis

    Full text link
    1. Branchial activities of Na + −K + -ATPase, ouabain-insensitive ATPase, (Mg ++ -ATPase) and Ca ++ -ATPase were measured in Gillichthys mirabilis after adaptation to salinities ranging from 170% SW to FW. Stabilities of these activities against freezing and deoxycholate solubilization and the temperature-dependence of activity rates were also investigated. Subcellular distribution and some kinetic properties of these activities, and of SDH were compared in branchial tissues of fish adapted to 170% SW and to FW.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47126/1/360_2004_Article_BF00782593.pd

    Techniques for cardiac image segmentation

    No full text
    P

    Calibration of the X-ray photoelectron spectroscopy binding energy scale for the characterization of heterogeneous catalysts: is everything really under control?

    No full text
    Investigations of X-ray photoelectron spectra from solid samples need corrections for the surface charging effect. For powder samples such as heterogeneous catalysts and their supports, the C(C,H) component of the C 1s peak is often used as an internal standard for the calibration of the binding energy scale. Although this method is widely recognized as suitable for the study of heterogeneous catalysts, we show that a significant calibration bias can be encountered upon comparing samples with different bulk composition. In this paper, a series of SiO2 -Al2 O3 supports and Pd/SiO2 -Al2 O3 catalysts with various Si/Al ratios were studied. The spectra issued from these samples were processed with the classical calibration method on the basis of the carbon peak. Important discrepancies in the relative position of the photoelectron peaks were noticed. After systematically discarding instrument-related issues, a true chemical influence of the bulk matrix on the analyzed surface species was evidenced. The extent of this chemical effect was dependent on the composition of the sample and more precisely on its ionicity. Two possible mechanisms for this chemical effect were proposed and discussed. Finally, an alternative calibration method was offered

    Le carbone de contamination est-il toujours une bonne référence pour la calibration de l’échelle en énergie sur des catalyseurs de compositions très variables analysés par XPS ?

    No full text
    La calibration de l’échelle en énergie est une étape cruciale lors des analyses XPS. Dans le cas de solides divisés comme les catalyseurs hétérogènes, la composante C-(C-H) du pic C 1s du carbone de contamination est généralement utilisée. Cette méthodologie est évaluée sur des catalyseurs de Pd supporté sur silico-alumines
    • …
    corecore