612 research outputs found

    Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes

    Get PDF
    1. To determine feeding links between primary producers, invertebrates and fish, stable isotope analyses and gut content analyses of fish were conducted on the components of four shallow, eutrophic to hypertrophic, plant-dominated lakes. 2. Although separation of basal resources was possible, the diets of both fish and invertebrates were broad, comprising food from different compartments (planktonic, epiphytic/benthic), as well as from different trophic levels. 3. Mixing models were used to determine the extent to which periphyton production supported higher trophic levels. Only one species of invertebrate relied upon periphyton production exclusively. 4. Fish density affected the diets of invertebrates. The response was different for planktonic and epiphytic/benthic invertebrates. The proportion of periphyton production in the diets of zooplankton appeared to increase with fish density, whilst it decreased for other invertebrates. 5. As all zooplankton samples were collected in the open water at dusk, these results are further evidence for the diurnal horizontal migration of zooplankton. Although not conclusive, they are consistent with a behavioural response by invertebrates and zooplankton in the presence of fish

    Contribution of anadromous fish to the diet of European catfish in a large river system

    Get PDF
    Many anadromous fish species, when migrating from the sea to spawn in fresh waters, can potentially be a valuable prey for larger predatory fish, thereby efficiently linking these two ecosystems. Here, we assess the contribution of anadromous fish to the diet of European catfish (Silurus glanis) in a large river system (Garonne, southwestern France) using stable isotope analysis and allis shad (Alosa alosa) as an example of anadromous fish. Allis shad caught in the Garonne had a very distinct marine delta(13)C value, over 8 per thousand higher after lipid extraction compared to the mean delta(13)C value of all other potential freshwater prey fish. The delta(13)C values of European catfish varied considerably between these two extremes and some individuals were clearly specializing on freshwater prey, whereas others specialized on anadromous fish. The mean contribution of anadromous fish to the entire European catfish population was estimated to be between 53% and 65%, depending on the fractionation factor used for delta(13)C

    Integrating isotopes and documentary evidence : dietary patterns in a late medieval and early modern mining community, Sweden

    Get PDF
    We would like to thank the Archaeological Research Laboratory, Stockholm University, Sweden and the Tandem Laboratory (Ångström Laboratory), Uppsala University, Sweden, for undertaking the analyses of stable nitrogen and carbon isotopes in both human and animal collagen samples. Also, thanks to Elin Ahlin Sundman for providing the δ13C and δ15N values for animal references from Västerås. This research (Bäckström’s PhD employment at Lund University, Sweden) was supported by the Berit Wallenberg Foundation (BWS 2010.0176) and Jakob and Johan Söderberg’s foundation. The ‘Sala project’ (excavations and analyses) has been funded by Riksens Clenodium, Jernkontoret, Birgit and Gad Rausing’s Foundation, SAU’s Research Foundation, the Royal Physiographic Society of Lund, Berit Wallenbergs Foundation, Åke Wibergs Foundation, Lars Hiertas Memory, Helge Ax:son Johnson’s Foundation and The Royal Swedish Academy of Sciences.Peer reviewedPublisher PD

    Diet and food strategies in a southern al-Andalusian urban environment during Caliphal period, ecija, Sevilla

    Get PDF
    The Iberian medieval period is unique in European history due to the widespread socio-cultural changes that took place after the arrival of Arabs, Berbers and Islam in 711 AD. Recently, isotopic research has been insightful on dietary shifts, status, resource availability and the impact of environment. However, there is no published isotopic research exploring these factors in southern Iberian populations, and as the history of this area differs to the northern regions, this leaves a significant lacuna in our knowledge. This research fills this gap via isotopic analysis of human (n = 66) and faunal (n = 13) samples from the 9th to the 13th century Écija, a town renowned for high temperatures and salinity. Stable carbon (δ13C) and nitrogen (δ15N) isotopes were assessed from rib collagen, while carbon (δ13C) values were derived from enamel apatite. Human diet is consistent with C3 plant consumption with a very minor contribution of C4 plants, an interesting feature considering the suitability of Écija to C4 cereal production. δ15N values vary among adults, which may suggest variable animal protein consumption or isotopic variation within animal species due to differences in foddering. Consideration of δ13C collagen and apatite values together may indicate sugarcane consumption, while moderate δ15N values do not suggest a strong aridity or salinity effect. Comparison with other Iberian groups shows similarities relating to time and location rather than by religion, although more multi-isotopic studies combined with zooarchaeology and botany may reveal subtle differences unobservable in carbon and nitrogen collagen studies alone.OLC is funded by Plan Galego I2C mod.B (ED481D 2017/014). The research was partially funded by the projects “Galician Paleodiet” and by Consiliencia network (ED 431D2017/08) Xunta de GaliciaS

    Isotopic and molecular distributions of biochemicals from fresh and buried Rhizophora mangle leaves†

    Get PDF
    Rhizophora mangle L. (red mangrove) is the dominant species of mangrove in the Americas. At Twin Cays, Belize (BZ) red mangroves are present in a variety of stand structures (tall >5 m in height, transition ~2–4 m and dwarf ~1–1.5 m). These height differences are coupled with very different stable carbon and nitrogen isotopic values[1] (mean tall δ(13)C = -28.3‰, δ(15)N = 0‰; mean tall δ(13)C = -25.3‰, δ(15)N = -10‰). To determine the utility of using these distinct isotopic compositions as 'biomarkers' for paleoenvironmental reconstruction of mangrove ecosystems and nutrient availability, we investigated the distribution and isotopic (δ(13)C and δ(15)N) composition of different biochemical fractions (water soluble compounds, free lipids, acid hydrolysable compounds, individual amino acids, and the residual un-extractable compounds) in fresh and preserved red mangrove leaves from dwarf and tall trees. The distribution of biochemicals are similar in dwarf and tall red mangrove leaves, suggesting that, regardless of stand structure, red mangroves use nutrients for biosynthesis and metabolism in a similar manner. However, the δ(13)C and δ(15)N of the bulk leaf, the biochemical fractions, and seven amino acids can be used to distinguish dwarf and tall trees at Twin Cays, BZ. The data support the theory that the fractionation of carbon and nitrogen occurs prior to or during uptake in dwarf and tall red mangrove trees. Stable carbon and nitrogen isotopes could, therefore, be powerful tools for predicting levels of nutrient limitation at Twin Cays. The δ(13)C and δ(15)N of biochemical fractions within preserved leaves, reflect sedimentary cycling and nitrogen immobilization. The δ(15)N of the immobilized fraction reveals the overlying stand structure at the time of leaf deposition. The isotopic composition of preserved mangrove leaves could yield significant information about changes in ecosystem dynamics, nutrient limitation and past stand structure in mangrove paleoecosystems

    Application of Nitrogen and Carbon Stable Isotopes (δ15Ν and δ13C) to Quantify Food Chain Length and Trophic Structure

    Get PDF
    Increasingly, stable isotope ratios of nitrogen (delta N-15) and carbon (delta C-13) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using delta N-15, and carbon range (CR) using delta C-13, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in delta N-15 ordelta C-13 from source to consumer) between trophic levels and among food chains. delta N-15 discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. delta C-13 discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of delta C-13 as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

    Temporal and spatial variability in stable isotope ratios of SPM link to local hydrography and longer term SPM averages suggest heavy dependence of mussels on nearshore production

    Get PDF
    Temporal changes in hydrography affect suspended particulate matter (SPM) composition and distribution in coastal systems, potentially influencing the diets of suspension feeders. Temporal variation in SPM and in the diet of the mussel Perna perna, were investigated using stable isotope analysis. The δ13C and δ15 N ratios of SPM, mussels and macroalgae were determined monthly, with SPM samples collected along a 10 km onshore–offshore transect, over 14 months at Kenton-on-Sea, on the south coast of South Africa. Clear nearshore (0 km) to offshore (10 km) carbon depletion gradients were seen in SPM during all months and extended for 50 km offshore on one occasion. Carbon enrichment of coastal SPM in winter (June–August 2004 and May 2005) indicated temporal changes in the nearshore detrital pool, presumably reflecting changes in macroalgal detritus, linked to local changes in coastal hydrography and algal seasonality. Nitrogen patterns were less clear, with SPM enrichment seen between July and October 2004 from 0 to 10 km. Nearshore SPM demonstrated cyclical patterns in carbon over 24-h periods that correlated closely with tidal cycles and mussel carbon signatures, sampled monthly, demonstrated fluctuations that could not be correlated to seasonal or monthly changes in SPM. Macroalgae showed extreme variability in isotopic signatures, with no discernable patterns. IsoSource mixing models indicated over 50% reliance of mussel tissue on nearshore carbon, highlighting the importance of nearshore SPM in mussel diet. Overall, carbon variation in SPM at both large and small temporal scales can be related to hydrographic processes, but is masked in mussels by long-term isotope integration

    Interpreting ancient food practices:Stable isotope and molecular analyses of visible and absorbed residues from a year-long cooking experiment

    Get PDF
    Chemical analyses of carbonized and absorbed organic residues from archaeological ceramic cooking vessels can provide a unique window into the culinary cultures of ancient people, resource use, and environmental effects by identifying ingredients used in ancient meals. However, it remains uncertain whether recovered organic residues represent only the final foodstuffs prepared or are the accumulation of various cooking events within the same vessel. To assess this, we cooked seven mixtures of C3 and C4 foodstuffs in unglazed pots once per week for one year, then changed recipes between pots for the final cooking events. We conducted bulk stable-isotope analysis and lipid residue analysis on the charred food macro-remains, carbonized thin layer organic patina residues and absorbed lipids over the course of the experiment. Our results indicate that: (1) the composition of charred macro-remains represent the final foodstuffs cooked within vessels, (2) thin-layer patina residues represent a mixture of previous cooking events with bias towards the final product(s) cooked in the pot, and (3) absorbed lipid residues are developed over a number of cooking events and are replaced slowly over time, with little evidence of the final recipe ingredients

    Estimating the Diets of Animals Using Stable Isotopes and a Comprehensive Bayesian Mixing Model

    Get PDF
    Using stable isotope mixing models (SIMMs) as a tool to investigate the foraging ecology of animals is gaining popularity among researchers. As a result, statistical methods are rapidly evolving and numerous models have been produced to estimate the diets of animals—each with their benefits and their limitations. Deciding which SIMM to use is contingent on factors such as the consumer of interest, its food sources, sample size, the familiarity a user has with a particular framework for statistical analysis, or the level of inference the researcher desires to make (e.g., population- or individual-level). In this paper, we provide a review of commonly used SIMM models and describe a comprehensive SIMM that includes all features commonly used in SIMM analysis and two new features. We used data collected in Yosemite National Park to demonstrate IsotopeR's ability to estimate dietary parameters. We then examined the importance of each feature in the model and compared our results to inferences from commonly used SIMMs. IsotopeR's user interface (in R) will provide researchers a user-friendly tool for SIMM analysis. The model is also applicable for use in paleontology, archaeology, and forensic studies as well as estimating pollution inputs
    • …
    corecore