1,693 research outputs found

    Fundamental two-stage formulation for Bayesian system identification, Part I: General theory

    Get PDF
    Structural system identification is concerned with the determination of structural model parameters (e.g., stiffness, mass) based on measured response data collected from the subject structure. For linear structures, one popular strategy is to adopt a ‘two-stage’ approach. That is, modal identification (e.g., frequency, mode shape) is performed in Stage I, whose information is used for inferring the structural parameters in Stage II. Different variants of Bayesian two-stage formulations have been proposed in the past. A prediction error model is commonly introduced to build a link between Stages I and II, treating the most probable values of the natural frequencies and mode shapes identified in Stage I as ‘data’ for Stage II. This type of formulation, which casts a prediction error model through descriptive statistics, involves heuristics that distort the fundamental nature of the Bayesian approach, although it has appeared to be inevitable. In this paper, a fundamental theory is developed for the Bayesian two-stage problem. The posterior distribution of structural parameters is derived rigorously in terms of the information available in the problem, namely the prior distribution of structural parameters, the posterior distribution of modal parameters in Stage I and the distribution of modal parameters conditional on the structural parameters that connects Stages I and II. The theory reveals a fundamental principle that ensures no double-counting of prior information in the two-stage identification process. Mathematical statements are also derived that provide insights into the role of the structural modeling error. Beyond the original structural model identification problem that motivated the work, the developed theory can be applied in more general settings. In the companion paper, examples with synthetic and real experimental data are provided to illustrate the proposed theory

    Fundamental two-stage formulation for Bayesian system identification, Part II: Application to ambient vibration data

    Get PDF
    A fundamental theory has been developed for a general two-stage Bayesian system identification problem in the companion paper (Part I). This paper applies the theory to the particular case of structural system identification using ambient vibration data. In Stage I, the modal properties are identified using the Fast Bayesian FFT method. Given the data, their posterior distribution can be well approximated by a Gaussian distribution whose mean and covariance matrix can be computed efficiently. In Stage II, the structural model parameters (e.g., stiffness, mass) are identified incorporating the posterior distribution of the natural frequencies and mode shapes in Stage I and their conditional distribution based on the theoretical structural finite element model. Synthetic and experimental data are used to illustrate the proposed theory and applications. A number of factors commonly relevant to structural system identification are studied, including the number of measured degrees of freedom, the number of identifiable modes and sensor alignment error

    Rationally Designed Sodium Chromium Vanadium Phosphate Cathodes with Multi-Electron Reaction for Fast-Charging Sodium-Ion Batteries

    Get PDF
    Sodium super-ionic conductor (NASICON)-structured phosphates are emerging as rising stars as cathodes for sodium-ion batteries. However, they usually suffer from a relatively low capacity due to the limited activated redox couples and low intrinsic electronic conductivity. Herein, a reduced graphene oxide supported NASICON Na3Cr0.5V1.5(PO4)3 cathode (VC/C-G) is designed, which displays ultrafast (up to 50 C) and ultrastable (1 000 cycles at 20 C) Na+ storage properties. The VC/C-G can reach a high energy density of ≈470 W h kg−1 at 0.2 C with a specific capacity of 176 mAh g−1 (equivalent to the theoretical value); this corresponds to a three-electron transfer reaction based on fully activated V5+/V4+, V4+/V3+, V3+/V2+ couples. In situ X-ray diffraction (XRD) results disclose a combination of solid-solution reaction and biphasic reaction mechanisms upon cycling. Density functional theory calculations reveal a narrow forbidden-band gap of 1.41 eV and a low Na+ diffusion energy barrier of 0.194 eV. Furthermore, VC/C-G shows excellent fast-charging performance by only taking ≈11 min to reach 80% state of charge. The work provides a widely applicable strategy for realizing multi-electron cathode design for high-performance SIBs

    “Mn-locking” effect by anionic coordination manipulation stabilizing Mn-rich phosphate cathodes

    Get PDF
    High-voltage cathodes with high power and stable cyclability are needed for high-performance sodium-ion batteries. However, the low kinetics and inferior capacity retention from structural instability impede the development of Mn-rich phosphate cathodes. Here, we propose light-weight fluorine (F) doping strategy to decrease the energy gap to 0.22 eV from 1.52 eV and trigger a “Mn-locking” effect—to strengthen the adjacent chemical bonding around Mn as confirmed by density functional theory calculations, which ensure the optimized Mn ligand framework, suppressed Mn dissolution, improved structural stability and enhanced electronic conductivity. The combination of in situ and ex situ techniques determine that the F dopant has no influence on the Na+ storage mechanisms. As a result, an outstanding rate performance up to 40C and an improved cycling stability (1000 cycles at 20C) are achieved. This work presents an effective and widely available light-weight anion doping strategy for high-performance polyanionic cathodes

    Comparative Analysis of PvPAP Gene Family and Their Functions in Response to Phosphorus Deficiency in Common Bean

    Get PDF
    BACKGROUND: Purple acid phosphatases (PAPs) play a vital role in adaptive strategies of plants to phosphorus (P) deficiency. However, their functions in relation to P efficiency are fragmentary in common bean. PRINCIPAL FINDINGS: Five PvPAPs were isolated and sequenced in common bean. Phylogenetic analysis showed that PvPAPs could be classified into two groups, including a small group with low molecular mass, and a large group with high molecular mass. Among them, PvPAP3, PvPAP4 and PvPAP5 belong to the small group, while the other two belong to the large group. Transient expression of 35S:PvPAPs-GFP on onion epidermal cells verified the variations of subcellular localization among PvPAPs, suggesting functional diversities of PvPAPs in common bean. Quantitative PCR results showed that most PvPAPs were up-regulated by phosphate (Pi) starvation. Among them, the expression of the small group PvPAPs responded more to Pi starvation, especially in the roots of G19833, the P-efficient genotype. However, only overexpressing PvPAP1 and PvPAP3 could result in significantly increased utilization of extracellular dNTPs in the transgenic bean hairy roots. Furthermore, overexpressing PvPAP3 in Arabidopsis enhanced both plant growth and total P content when dNTPs were supplied as the sole external P source. CONCLUSIONS: The results suggest that PvPAPs in bean varied in protein structure, response to P deficiency and subcellular localization. Among them, both PvPAP1 and PvPAP3 might function as utilization of extracellular dNTPs

    Microtubular Stability Affects pVHL-Mediated Regulation of HIF-1alpha via the p38/MAPK Pathway in Hypoxic Cardiomyocytes

    Get PDF
    BACKGROUND: Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL), as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. METHODOLOGY/PRINCIPAL FINDINGS: In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4) overexpression plasmids and microtubule-depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu) overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. CONCLUSIONS/SIGNIFICANCE: This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Environmental impact assessments of the Three Gorges Project in China: issues and interventions

    Get PDF
    The paper takes China's authoritative Environmental Impact Statement for the Yangzi (Yangtze) Three Gorges Project (TGP) in 1992 as a benchmark against which to evaluate emerging major environmental outcomes since the initial impoundment of the Three Gorges reservoir in 2003. The paper particularly examines five crucial environmental aspects and associated causal factors. The five domains include human resettlement and the carrying capacity of local environments (especially land), water quality, reservoir sedimentation and downstream riverbed erosion, soil erosion, and seismic activity and geological hazards. Lessons from the environmental impact assessments of the TGP are: (1) hydro project planning needs to take place at a broader scale, and a strategic environmental assessment at a broader scale is necessary in advance of individual environmental impact assessments; (2) national policy and planning adjustments need to react quickly to the impact changes of large projects; (3) long-term environmental monitoring systems and joint operations with other large projects in the upstream areas of a river basin should be established, and the cross-impacts of climate change on projects and possible impacts of projects on regional or local climate considered. © 2013 Elsevier B.V.Xibao Xu, Yan Tan, Guishan Yan
    • 

    corecore