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Abstract 

Structural system identification is concerned with the determination of structural model 

parameters (e.g., stiffness, mass) based on measured response data collected from the subject 

structure. For linear structures, one popular strategy is to adopt a ‘two-stage’ approach. That is, 

modal identification (e.g., frequency, mode shape) is performed in Stage I, whose information is 

used for inferring the structural parameters in Stage II. Different variants of Bayesian two-stage 

formulations have been proposed in the past. A prediction error model is commonly introduced 

to build a link between Stage I and Stage II, treating the most probable values of the natural 

frequencies and mode shapes identified in Stage I as ‘data’ for Stage II. This type of formulation, 

which casts a prediction error model through descriptive statistics, involves heuristics that distort 

the fundamental nature of the Bayesian approach, although it has appeared to be inevitable. In 

this paper, a fundamental theory is developed for the Bayesian two-stage problem. The posterior 

distribution of structural parameters is derived rigorously in terms of the information available in 

the problem, namely the prior distribution of structural parameters, the posterior distribution of 

modal parameters in Stage I and the distribution of modal parameters conditional on the 

structural parameters that connects Stages I and II. The theory reveals a fundamental principle 

that ensures no double-counting of prior information in the two-stage identification process. 

Mathematical statements are also derived that provide insights into the role of the structural 

modeling error. Beyond the original structural model identification problem that motivated the 

work, the developed theory can be applied in more general settings. In the companion paper, 

examples with synthetic and real experimental data are provided to illustrate the proposed theory.  
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1. Introduction 

System identification involves making inference about the parameters of a mathematical model 

based on observed measurements of the real system. Driven by the increasing demand for 

understanding and using mathematical models of nature and engineered systems consistent with 

observations, it has become one of the most important problems in modern science and 

engineering. The Bayesian approach provides a fundamental means for system identification, 

resolving uncertainties due to the lack of information in the context of probability logic [1][2][3]. 

The parameters are viewed as uncertain variables and the identification results are cast in terms 

of their probability distribution after incorporating information from the observed data.  

 

Let θ  be a set of model parameters to be identified from available data D . Bayesian system 

identification aims at determining the ‘posterior distribution’ (i.e., given data), )|( Dp θ . Using 

Bayes’ Theorem, 

)|()()()|( 1
θθθ DppDpDp                      (1) 

where 1)( Dp  is a normalizing constant; )(θp  is the ‘prior distribution’ of θ  (i.e., in the 

absence of data); and )|( θDp  is the ‘likelihood function’ that gives the distribution of D  for a 

given θ . If the relationship between θ  and D  is complicated, the identification problem can be 

very challenging. For example, it can be difficult in the first place to formulate the likelihood 

function )|( θDp  in an explicit form conducive to analytics or computations. The problem may 

not be ‘globally identifiable’, i.e., there is more than one or even an infinite number of most 

probable values, reflecting the fact that the available data is not sufficient for delineating their 

plausibility. In this case it is also difficult to extract information (e.g., descriptive statistics) about 

the posterior distribution of θ  [4].  

 

In view of the difficulty of identifying θ  directly from the data D , a ‘two-stage’ approach has 

been suggested to convert the original problem into two sub-problems which are more intuitive. 

This has been motivated by structural system identification problems, where the target is to 

identify the structural parameters (e.g., stiffness, mass) from vibration data (e.g., acceleration) 

measured from the subject structure [5][6][7]. In Stage I the modal properties, i.e., natural 

frequencies, damping ratios, mode shapes, etc., are first identified. Their identification result is 
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then used for identifying the structural parameters in Stage II. Although intuitive, formulating the  

two-stage problem in strict accordance with Bayes’ rule is mathematically non-trivial. One needs 

to express the posterior distribution of θ  in Stage II in terms of the posterior distribution of the 

modal parameters in Stage I, in an explicit manner consistent with the relationship between the 

modal properties and the data (Stage I), the relationship between the modal parameters and the 

structural parameters and the prior information on the structural parameters.  

 

Two-stage formulations with different variants have been proposed, e.g., [8][9][10][11][12]. 

Applications can be found in, e.g., [13][14][15]. The existing formations, however, involve 

heuristics in the formulation of the likelihood function )|( θDp  in Stage II. In one popular 

formulation, in order to link Stage I and II, the most probable value (MPV, a descriptive statistic) 

of the modal parameters in Stage I is taken as ‘data’ and modeled to consist of the structural 

model prediction (which depends on the structural parameters) and a prediction error. The 

statistical properties of the latter is determined from either ensemble statistics of identification 

results in Stage I in early developments, or from the posterior statistics in more recent 

developments [16]. Casting a prediction error model on the most probable modal parameters, 

which is merely a descriptive statistic characterizing the posterior distribution, has philosophical 

issues and distorts the fundamental nature of a Bayesian approach. Due to the non-trivial nature 

of the two-stage problem, however, the heuristic treatment has so far appeared to be unavoidable.  

 

In this work, we develop a general fundamental theory for the Bayesian two-stage problem and 

apply it to structural system identification based on ambient vibration data. It is presented in two 

companion papers. In this paper, we derive the equation that fundamentally expresses the 

posterior distribution of θ  in terms of the posterior distribution of the parameters identified in 

Stage I. Theoretical issues associated with the formulation are investigated in detail. In the 

companion paper [17], the general theory is applied to the case of structural model identification 

using ambient vibration data. Illustrative examples with synthetic and experimental data are 

presented to verify the method and investigate its applications. 
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2. Problem context 

For clarity we first present the context of the two-stage identification problem. Recall from the 

introduction that the target is to determine the posterior distribution of θ  from the measured data 

D . For discussion purposes we refer θ  as the ‘structural parameters’. This terminology is 

motivated from the structural system identification problem. Suppose there is a ‘data prediction 

model’ whose set of parameters α  can be readily identified from D , in the sense that the 

likelihood function )|( αDp  is available in explicit form and conducive to computations. 

Although not mathematically required, α  is often globally identifiable from the data and its 

posterior statistics (e.g., most probable value and covariance matrix) can be determined 

efficiently. Both θ  and α  are related to the data D  but intuitively the relationship between α  

and D  is more direct and characteristic. Without loss of generality, divide the parameters in α  

into two groups,  

],[ υα             (2) 

where   is related to θ  but υ  is not (and is possibly null). The relationship between   and θ  

is described through a ‘structural prediction model’ that gives a prediction of   for a given θ  at 

least probabilistically, in terms of the conditional distribution )|( θp .  

 

The idea of a two-stage approach is to first identify   from D  (Stage I) and then use the 

identification result to identify θ  (Stage II). The potential advantage is that the result in Stage I 

is often demanded and hence calculated anyway; and is relatively easy to obtain and check 

intuitively, providing a quick consolidation of the information in the data that is useful for 

making inference about θ . Of course, Stage II can still be difficult but it is likely to be easier 

than the direct approach and its result is easier to check or understand because the relationship 

between θ  and   (the structural model) can be more tractable than that between θ  and D .  

 

Figure 1 gives a schematic diagram of the two-stage Bayesian identification problem described 

above. Table 1 summarizes the nomenclature. In the particular context of structural system 

identification that motivated the approach, θ  is the set of structural parameters (e.g., stiffness, 

mass) to be identified from the measured vibration data D  (e.g., acceleration histories); and α  is 

the set of all modal parameters (e.g., natural frequencies, damping ratios, mode shapes, etc) that 
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are necessary to give a complete probabilistic description of the data D  in terms of the 

likelihood function )|( αDp . The relationship between θ  and D  depends on the structural 

model. The structural parameters θ  are not always globally identifiable from the data, e.g., when 

there are too many structural parameters or too few data. On the other hand, for linear elastic 

structures the modal parameters α  of well-excited modes can be readily identified from vibration 

data. They are often under frequent demand in practice as they govern resonance characteristics 

and directly affect the vibration response of structures. Within ],[ υα  , the set   consists of 

the natural frequencies and mode shapes, which can be predicted by an available finite element 

model (the structural model) at least probabilistically when θ  is given; υ  consists of the 

damping ratios and other parameters that according to the structural model are not related to θ .    

 

The central task of establishing the theory for the Bayesian two-stage problem is to express the 

posterior distribution of θ  in Stage II in terms of the posterior distribution of   in Stage I. The 

main result of this paper is encapsulated in the form of a theorem, presented below for the ease 

of reading. It shall be proven in Section 4 and its associated issues shall be investigated. 

  

Theorem 1 (Two-stage formulation) 

Let ),|( υDp  be the likelihood function formulated according to the data prediction model in 

Stage I; )|( θp  be the conditional distribution of   formulated according to the structural 

prediction model in Stage II; )|,( θυp  be the joint (prior) conditional distribution of ),( υ  for 

given θ  and )(υp  be the prior distribution of υ . Assume that 

),|(),,|( υθυ  DpDp           (3) 

)()|()|,( υθθυ ppp            (4) 

Then the posterior distribution of θ  given the data D  and prior information is given by 

  dpDppDp )|()|()()|( 0 θθθ                   (5) 

where   

 υυ dDpDp )|,()|( 00           (6) 

is the marginal posterior distribution of   using (hypothetically) a uniform (i.e., constant) prior 

distribution for   in Stage I; and 
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)(),|()|,(0 υυυ pDpDp           (7) 

is the corresponding (hypothetical) joint posterior distribution of ),( υ .  

■ 

 

Equation (3) says that the information of the structural parameters θ  is redundant for the 

determining the plausibility of the data D  when the parameters in Stage I, ],[ υα  , are given. 

Equation (4) distinguishes two types of parameters in the structural prediction model, allowing 

for parameters   that depend on θ  and parameters υ  that do not.  

  

3. Basic formulation 

In this section we derive the basic equation that expresses the posterior distribution of θ  in terms 

of the identification result in Stage I. The theory to be developed essentially translates the 

interfacing information in Figure 1 into Bayesian mathematical forms. 

 

Assume that the probability distribution of the data D  can be fully determined for given ),( υ . 

This gives the ‘likelihood function’ ),|( υDp , which must be formulated based on the data 

prediction model. The set   contains the parameters that are related to θ ; and υ  contains the 

remaining unrelated ones. Specifically, it is assumed that 

)()|()|,( υθθυ ppp            (8) 

This is equivalent to the following two basic assumptions: 

1)   and υ  are conditionally independent for a given θ ; 

2) θ  is informative about   but not υ  

Equation (8) implies that   and υ  are unconditionally independent because, using the theorem 

of total probability, 
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)()(             

)()()|(             

)()()|(             

)()|,(),(

υ

υθθθ

θθυθ

θθθυυ

pp

pdpp

dppp

dppp























        (9) 

since  

 θθθ dppp )()|()(           (10) 

The conditional distribution )|( θp  in (8) must be derived based on the structural prediction 

model that gives at least a probabilistic prediction of   for a given θ . As a remark, (10) shows 

that the prior distribution of   is completely determined by )(θp  and )|( θp , and so unlike 

)(θp  it is not open to choice by the analyst. This is an important issue in the two-stage problem 

that shall be revisited later.  

3.1. Basic form 

We now derive an expression for )|( Dp θ  in terms of )|( Dp   in Stage I and other probabilistic 

information available in the problem. We start with the relationship between joint and marginal 

distribution: 

  υθυθ ddDpDp  )|,,()|(         (11) 

Using Bayes’ Theorem, 

),,(),,|()()|,,( 1
θυθυθυ  pDpDpDp        (12) 

Substituting (12) into (11), 

 
 υθυθυθ ddpDpDpDp  ),,(),,|()()|( 1       (13) 

For a given ),( υ  the probability distribution of D  is completely defined and so the additional 

information from θ  is redundant, i.e., ),|(),,|( υθυ  DpDp   from (3). A further application 

of Bayes’ Theorem on ),|( υDp  on the RHS gives 

)(
),(

)|,(
),,|( Dp

p

Dp
Dp

υ

υ
θυ




          (14) 
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Substituting (14) into (13), 

  υ
υ

θυ
υθ dd

p

p
DpDp 






),(

),,(
)|,()|(        (15) 

This equation expresses the posterior distribution of θ  in terms of the posterior distribution 

)|,( Dp υ  in Stage I and other associated prior distributions, ),,( θυp  and ),( υp . It is 

generally applicable regardless of the nature of   and υ  as we have not made use of the 

assumption in (8).   

 

Computationally, (15) is not useful because ),( υp  and ),,( θυp  are non-trivial functions 

which must be derived based on the prior information about θ  and the relationship between θ  

and ),( υ . We next simplify the expression by taking into consideration the different nature of 

  and υ  in the problem.  Using (8) and the implied form (9), the ratio of prior distributions in 

(15) becomes  

)(
)(

)|(
                

)()(

)()()|(
                

),(

)()|,(

),(

),,(

θ
θ

υ

θυθ

υ

θθυ

υ

θυ

p
p

p

pp

ppp

p

pp

p

p























        (16) 

which does not depend on υ . Substituting (16) into (15), 

 

 

















d
p

p
dDpp

ddp
p

p
DpDp

)(

)|(
)|,()(             

)(
)(

)|(
)|,()|(

θ
υυθ

υθ
θ

υθ

      (17) 

Note that the inner integral is simply the posterior marginal distribution of   in Stage I, i.e.,  

)|()|,( DpdDp   υυ          (18) 

We thus obtain the basic result: 

 



dp

p

Dp
pDp )|(

)(

)|(
)()|( θθθ        (19) 

As a simple check, if even   were not related to θ  then )()|(  pp θ  and (19) gives 

)()|( θθ pDp      (  not related to θ )    (20) 
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That is, there is no updating effect, which is a consistent result.  

 

Equation (19) is a simpler form than (15) as the effect of υ  has been eliminated. However, it 

involves the prior distribution )(p , which is non-trivial and must be determined according to 

(10). In the next section we derive a better form that can further eliminate this inconvenience. 

Not only does it provide a convenient formulation for computation, it also reveals the processing 

of information in the two-stage problem in a fundamental manner.     

 

4. Standard formulation 

Equation (19) expresses the posterior distribution of θ  given D  in terms of the posterior 

distribution of   (Stage I), the relationship between θ  and   in terms of )|( θp , and the 

prior distributions )(θp  and )(p . It cannot be directly used for computations because )(p  

has to be determined from (10). In this section we investigate this issue of prior information, 

which leads to an important principle in the two-stage approach. It also leads to an alternative but 

equivalent form of (19) that is conducive to computations and is recommended as the standard 

form. 

  

4.1. Consistent prior information 

In (19) the role of )(θp  is intuitive and appears in a conventional manner. The non-trivial part 

lies in the terms )|( θp  and )(p , which are respectively the prior distribution of   with and 

without the knowledge of θ . The conditional distribution )|( θp  reflects the uncertainty about 

  when θ  is known. It must be formulated based on the structural prediction model. On the 

other hand, )(p  reflects the information about   when θ  is not known. It is not arbitrary, 

however, because   and θ  are related and there is prior information about θ . The information 

contained in )(p  is induced by )(θp  and )|( θp , through the theorem of total probability in 

(10) recalled here: 

 θθθ dppp )()|()(           (21) 
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Note that a uniform prior distribution for θ , i.e., )(θp constant, does not necessarily induce a 

uniform prior distribution for  .  

 

4.2. Double-counting principle 

The posterior distribution )|( Dp   in Stage I has incorporated the prior information induced on 

 . The ratio )(/)|(  pDp  in (19) effectively removes this prior information. The derivation 

shows that as far as the posterior distribution of θ  is concerned this is the correct way to process 

the prior information on  . Intuitively, the prior information of θ  has been directly used in (19) 

through the term )(θp  and so it should not be ‘double-counted’. Whatever information induced 

by )(θp  and used in Stage I must be removed in Stage II. We refer this as the ‘double-counting 

principle’. Intuitive as it sounds, the mathematical form is by no means trivial. 

 

4.3. Standard form 

Equation (19) is not conducive to computations because the analytical expression for the induced 

prior distribution )(p  may not be available and it must also be used in obtaining the posterior 

distribution )|( Dp  . Philosophically, this complication may be unnecessary because the prior 

information induced on   should not play any role in the identification of θ , by virtue of the 

double-counting principle as just discussed. We next derive an equivalent form of (19) that 

removes its pseudo-dependence on the prior information induced on  , thereby allowing more 

straightforward insights and computations.  

 

The idea stems from the double-counting principle. For the purpose of identifying θ  in Stage II, 

if we artificially ignore the induced prior information on   in Stage I, then there is no need to 

remove it in Stage II. Of course under this hypothetical situation the posterior distribution of 

in Stage I will not reflect correctly its updated information but as far as the posterior distribution 

of θ  in Stage II is concerned it can still lead to the correct answer. In the following we provide a 

mathematical proof for this argument.  
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The key result is that the factor )(/)|(  pDp  in (19) can be expressed as the hypothetical 

posterior distribution of   in Stage I where its prior distribution is artificially taken to be 

uniform, i.e., constant. From Bayes’ Theorem, 

)(

)|(

)(

)|(

Dp

Dp

p

Dp 




           (22) 

Using the theorem of total probability, 









υυυ

υυυ

dpDp

dpDpDp

)(),|(               

)|(),|()|(





        (23) 

since from (9)   and υ  are independent based on prior information. Combining (22) and (23), 


 υυυ dpDpDp

p

Dp
)(),|()(

)(

)|( 1 



       (24) 

 

Consider now the hypothetical case where a uniform prior distribution is used for   in Stage I, 

i.e., 

constant)(   cp    (hypothetical case)    (25) 

For this case we specifically denote the resulting posterior distribution of  ],[ υ  by )|,(0 Dp υ , 

where the subscript ‘0’ reminds that it is not the actual posterior distribution but is only an 

instrumental one under the hypothetical case. Using Bayes’ Theorem, this hypothetical posterior 

distribution is given by 

)(),|()(                    

)()(),|()(                    

),(),|()()|,(

1

1

1
0

υυ

υυ

υυυ

pDpDpc

ppDpDp

pDpDpDp




















       (26) 

where the second equality follows from (9) and the third equality from (25). Except for the 

constant c , the RHS of this equation coincides with the integrand of (24). Substituting into (24) 

gives 

)|(                

)|,(
)(

)|(

0
1

0
1

Dpc

dDpc
p

Dp


















  υυ
        (27) 

where 
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 υυ dDpDp )|,()|( 00          (28) 

is the hypothetical marginal posterior distribution of   in Stage I. Substituting (27) into (19), 







 





dpDpp

dpDppcDp

)|()|()(              

)|()|()()|(

0

0
1

θθ

θθθ

       (29) 

This equation expresses the posterior distribution of θ  in terms of the prior distribution of θ , the 

hypothetical posterior distribution of   and the conditional distribution of   given θ . The 

integral over the product )|()|(0 θ pDp  fundamentally accounts for the identification 

uncertainty of θ  through )|(0 Dp   (Stage I) and structural prediction uncertainty through 

)|( θp . 

 

Equation (29) has important philosophical significance. It says that for the purpose of identifying 

θ , we can simply postpone using our prior information until Stage II, where in Stage I we 

artificially use a uniform prior distribution for  . This still leads to the same identification result 

as in (19) and it avoids the unnecessary complications arising from double-counting the prior 

information from θ  induced on  . Note that )|(0 Dp   is not the actual posterior distribution of 

  because it has not incorporated the prior information in )(p . For the purpose of obtaining 

the posterior distribution of θ , however, it is the one that facilitates computations and it still 

leads to the correct answer. Equation (29) is recommended as the standard form to be used for 

computations.  

 

The foregoing formulation is fundamental and unique as it follows strictly from Bayes’ Theorem. 

The result is simple and intuitive, but non-trivial to derive. The posterior distribution of θ  results 

consistently from the data prediction model, the structural prediction model and prior 

information. No heuristics are involved. 
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5. The role of structural prediction error 

By the very nature of prediction error it should play a role, and needs to be modeled, only when 

it is not possible to match reality with the theoretical model. Otherwise a consistent theory 

should simply indicate that the prediction error is zero, up to the evidence provided by the data. 

A mathematical result analogous to this statement can be derived based on the standard form 

(29).  

 

When there is no structural prediction error, in the sense that the knowledge of θ  completely 

determines the value of   through the model prediction )(~ θ  (say), then 

))(~()|( θθ  p          (30) 

where )(  is the Dirac-Delta function. Substituting (30) into (29) gives 

)|)(~()()|( 0
1 DppcDp θθθ 
         (31) 

That is, the posterior distribution of θ  is proportional to the product of the prior distribution and 

the posterior distribution of   in Stage I evaluated at the structural model prediction )(~ θ . 

 

In the general case when structural prediction error is modeled, suppose we partition the set of 

model parameters as ],[ PS θθθ  , where Sθ  is related to the structural model )(~   and Pθ  is 

related to the prediction error statistics (e.g., variance) of ~ . With little loss of generality 

assume that the prior distribution of Sθ  is uniform, i.e., )( Sp θ constant. Let 0θ P  

correspond to the case when the structural prediction error is not modeled. Equation (30) is then 

written more specifically as  

))(~(),|( SSp θ0θ            (32) 

Let ̂  be the most probable value (MPV) of   in Stage I, i.e.,  

)|ˆ()|( 00 DpDp       for any      (33) 

Suppose there is a Sθ̂  that gives a structural prediction matching exactly the MPV ̂  in Stage I, 

i.e.,  

 ˆ)ˆ(~ Sθ            (34) 
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Clearly, when the structural prediction error is not modeled, Sθ̂  is an MPV of Sθ  because in this 

case according to (31) with constant)( Sp θ , )|)(~()|( 0 DpDp SS θθ   is maximized at Sθ̂ . 

Intuitively, it can be expected that when the structural prediction error is modeled, the MPV of 

Sθ  is still Sθ̂  and the MPV of Pθ  is always zero, unless the prior distribution suggests 

otherwise. This is expressed in Proposition 1 below.  

 

Proposition 1 (Invariance of MPV when perfect match is possible) 

Let ̂  be the posterior MPV (most probable value) that maximizes the likelihood )|( Dp , or 

equivalently the hypothetical posterior distribution )|(0 Dp   in Stage I, i.e., 

)|ˆ()|( 00 DpDp      for any        (35) 

Let Sθ̂  be such that it can match the theoretical prediction with ̂ , i.e., 

 ˆ)ˆ(~ Sθ             (36) 

and ),ˆ( 0θS  maximizes the prior distribution 

),ˆ(),( 0θθθ SPS pp      for any ),( PS θθ      (37) 

Then  

)|,ˆ()|,( DpDp SPS 0θθθ     for any ),( PS θθ      (38) 

That is, ),ˆ( 0θS  is an MPV of the posterior distribution )|,( Dp PS θθ  in Stage II when structural 

prediction error is modeled. Moreover, if Sθ̂  is unique, the MPV ),ˆ( 0θS  is also unique.  

■ 

 

Proof of Proposition 1: 

First of all, maximizing )|( Dp  and )|(0 Dp   are equivalent because by definition the latter is 

the posterior distribution of   with (hypothetically) a uniform prior and from Bayes’ Theorem  

)|()()|()()|( 1
0  DppDpDpDp         (39) 

when )(p  is taken as a constant. When there is no prediction error ( 0θ P ) the conditional 

distribution ),|()|( 0θθ Spp    is simply a Dirac-Delta function at )(~
Sθ : 
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))(~(),|( SSp θ0θ            (40) 

Correspondingly, the posterior distribution of Sθ  is given by, according to (29), 

)|)(~(),(                  

))(~()|(),()|,(

0
1

0
1

Dppc

dDppcDp

SS

SSS

θ0θ

θ0θ0θ















 
     (41) 

Evaluating at SS θθ ˆ  and using  ˆ)ˆ(~ Sθ  from (36) gives 

)|ˆ(),ˆ(                   

)|)ˆ(~(),ˆ()|,ˆ(

0
1

0
1

Dppc

DppcDp

S

SSS









0θ

θ0θ0θ








       (42) 

 

On the other hand, for any ),( PS θθ , using the standard form in (29) and )|ˆ()|( 00 DpDp    

from (35), 

)|ˆ(),(                       

),|()|ˆ(),(                       

),|()|ˆ(),(                       

),|()|(),()|,(

0
1

0
1

0
1

0
1

Dppc

dpDppc

dpDppc

dpDppcDp

PS

PSPS

PSPS

PSPSPS

















θθ

θθθθ

θθθθ

θθθθθθ























     (43) 

since 1),|(   dp PS θθ . From (37), ),ˆ(),( 0θθθ SPS pp   for any ),( PS θθ , and so (43) 

implies 

)|,ˆ()|ˆ(),ˆ()|,( 0
1 DpDppcDp SSPS 0θ0θθθ          (44) 

and hence ),ˆ( 0θS  is an MPV of the posterior distribution )|,( Dp PS θθ . If Sθ̂  is unique, then 

the MPV ),ˆ( 0θS  is also unique because then it is the only value that satisfies the above 

inequality.  

■ 
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6. Illustrative example 

In this section we illustrate the developed theory using a simple example. In the companion 

paper we apply the theory to the case of structural model identification where the modal 

properties are identified using ambient data in Stage I and the structural model parameters 

(stiffness, mass) are identified in Stage II. The example here is designed to be simple so that it 

can be easily understood and it can illustrate the main theory explicitly. In reality the data 

prediction model (Stage I) and structural prediction model (Stage II) can be much more 

complicated to formulate. The number of parameters can also be much larger.  

 

Consider the following situation. The output response quantity y  of a system is thought to 

depend on the input x . The theoretical relationship between y  and x  is described by  

3
2

2
1 )(
2

);(~ aax
a

xy a          (45) 

where ],,[ 321 aaaa  contains the parameters associated with the model. Among these 

parameters, 1a  and 2a  are of primary interest because they in turn depend on another parameter 

S  that is directly associated with the property of the system. Theoretically this relationship may 

be described as )(11 Sfa   and )(22 Sfa   where )(1 Sf   and )(2 Sf   are known but 

complicated functions of S . In reality, modeling error exists and it is addressed by the 

following probabilistic description 

222

111

)(

)(









S

S

fa

fa
          (46) 

where 1  and 2  are assumed to be i.i.d. (independent and identically distributed) Gaussian with 

zero mean and (unknown) variance 2v .  

 

Output data of y  when the system is subjected to inputs },...,1:{ Nkxk   ( N number of 

samples) has been measured: 

},...,1:ˆ{ NkyD k            (47) 

Because of measurement error, kŷ  and kx  do not obey exactly the theoretical relationship in 

(45). To reflect the measurement error their relationship is modeled by augmenting (45) as 
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kkk xyy  );(~ˆ a           (48) 

where },...,1:{ Nkk   are modeled as i.i.d. Gaussian random variables with zero mean and 

(unknown) variance 1v .  

 

Using the data D , it is of interest to identify ),( 21 aa  and, if possible, S . From (45) and (46), it 

is clear that y  depends on ),( 21 aa  in a much more intuitive manner than on S . According to 

the theoretical model, 1a  is the curvature, 2a  is the location of x  when y  is minimum and 3a  is 

the minimum value of y . Provided that the inputs },...,1:{ Nkxk   cover a broad enough region 

around the minimum value of y , ],,[ 321 aaaa  should be globally identifiable and is therefore 

much easier to identify than S . This suggests the potential advantage of a two-stage approach 

where in Stage I we first identify a  from the data and then use the identification result of 1a  and 

2a  to identify S  in Stage II. The identification result in Stage I immediately yields useful 

information and understanding towards the problem, regardless of whether S  can be identified. 

Stage II attempts to further identify S . By this time there is already some insights gained from 

Stage I and the problem has been condensed in the sense that only the mappings )(1 Sf   and 

)(2 Sf   are involved, rather than their composite action through the quadratic relationship (45) 

in Stage I. Issues regarding identifiability and identification precision of S  are then directly 

related to the mappings )(1 Sf   and )(2 Sf  , and the identification precision of 1a  and 2a  in 

Stage I. In this manner the problem is better structured.  

 

6.1. Likelihood function in Stage I 

In the context of our theory, the data prediction model is given by (48) where k  is the data 

prediction error. The inputs },...,1:{ Nkxk   are assumed to be given and they shall be omitted 

in the conditioning statement to maintain consistency in notation with the main theory. The 

structural prediction model is given by (46), where ),( 21   is the structural prediction error. 

Although the primary interest in Stage I is to identify ),( 21 aa , the likelihood function 
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),|( 21 aaDp  cannot be derived directly based on (48) because the full probabilistic description 

of the data requires the knowledge of 3a  and 1v  as well. The full set of parameters in Stage I 

should therefore be  

],,,[ 1321 vaaaα           (49) 

Among these parameters, only 1a  and 2a  depend on S . Thus,  

],[ 21 aa            (50) 

],[ 13 vaυ            (51) 

We shall assume a uniform prior distribution for ],[ 13 vaυ . We cannot assign the prior 

distribution for ],[ 21 aa , however, as it is already determined by ),( 2vp S  and 

),|( 2vp S ; see (59) later. 

 

From (48), given ),,,( 1321 vaaa  and inputs },...,1:{ Nkxk  , the data },...,1:ˆ{ Nkyk   are i.i.d. 

Gaussian with mean },...,1:);(~{ Nkxy k a  and variance 1v . The likelihood function in Stage I is 

then given by  



















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vaaaypDp
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1
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13211

)];(~ˆ[
2

1
exp)2(                  

),,,|}ˆ({),|(

a

υ





    (52) 

where the conditioning on },...,1:{ Nkxk   has been omitted for consistency with the main 

theory. 

 

6.2. Conditional distribution )|( θp  

Although the primary interest in Stage II is to identify S , the conditional distribution  

)|,()|( 21 SS aapp    cannot be derived directly because according to (46) the full 

probabilistic description of ],[ 21 aa  requires the knowledge of 2v  as well. The full set of 

parameters to be identified in Stage II should therefore be defined as  

],[ 2vSθ            (53) 

In the context of Proposition 1,  
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2vP

SS





θ

θ 
           (54) 

The independence prior assumption )()|()|,( υθθυ ppp    in (8) manifests into 

),(),|,(),|,,,( 1322121321 vapvaapvvaaap SS         (55) 

which is justified in this example. 

 

According to (46), given ],[ 2vSθ , 1a  and 2a  are i.i.d. Gaussian with mean )(1 Sf   and 

)(2 Sf  , respectively, and a common variance 2v . The conditional distribution )|( θp  is then 

given by 

 

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
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
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   (56) 

 

6.3. Posterior distribution in Stage I 

Given the data D , the posterior distribution of ],,,[],[ 1321 vaaaυ  is given by, using Bayes’ 

Theorem, 

),,,()];(~ˆ[
2

1
exp)2(                   

),,,(),,,|}ˆ({                   
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  (57) 

where ),,,( 1321 vaaap  is the prior distribution. Using (55) it can be shown that (see also (9)) 

),(),(),,,( 13211321 vapaapvaaap          (58) 

Note that ),( 13 vap  has been assigned to be uniform in Section 6.1. On the other hand, ),( 21 aap  

is not open to assignment by the analyst because it is completely determined by ),|,( 221 vaap S  

(from (56)) and ),( 2vp S  (assigned by analyst) through (see also (21)): 

  2222121 ),(),|,(),( dvdvpvaapaap SSS        (59) 
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6.4. Hypothetical posterior distribution in Stage I 

The posterior distribution )|,( Dp υ  in (57) is the one that reflects the updated knowledge on 

),( υ  after incorporating the information from both the prior distribution and the data. As far as 

the knowledge of ),( υ  is concerned, it is the one that is relevant. However, it is not the 

posterior distribution to be used in Stage II in the standard formulation (Section 4) to avoid 

double-counting the prior information. Instead, the following hypothetical posterior distribution 

(which has ignored the prior information induced on   in Stage I) should be used: 
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    (60) 

since ),( 13 vap  has been assigned to be uniform in Section 6.1. Based on this, the hypothetical 

posterior marginal distribution )|(0 Dp   can be obtained by integrating out ],[ 13 vaυ : 
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  (61) 

Substituting );(~ akxy  from (45) shows that the exponent in the integrand is a quadratic function 

of 3a  and so the integration with respect to 3a  can be performed analytically, giving (details 

omitted) 
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where 
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The integral with respect to 1v  in (62) be evaluated analytically, giving (omitting constants) 
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2/)3(2
120 )()|(  NDp          (65) 

Note that 1  and 2  depend on ],[ 21 aa  through (63) and (64), respectively. 

 

It should be noted that in general applications the integrals can be complicated and they may not 

be obtained analytically. When the integral is of Laplace type its asymptotic behavior for large 

N  can be expressed analytically [18][19] in terms of the Hessian matrix of the log of the 

integrand. More generally, as long as )|,(0 Dp υ  has a single peak, it may be (heuristically) 

approximated by a Gaussian distribution. Correspondingly the marginal distribution )|(0 Dp   is 

also Gaussian. This, however, is only an approximation and need not be asymptotically correct.   

 

6.5. Posterior distribution in Stage II 

Based on (29), the posterior distribution )}ˆ{|,()|( 12
N
kkS yvpDp  θ  in Stage II is given by 

 
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

2122112102

0

),|,()}ˆ{|,(),(              

)|()|()()|(

dadavaapyaapvp

dpDppDp

S
N
kkS 

 θθθ

    (66) 

where ),( 2vp S  is the prior distribution assigned by the analyst; )}ˆ{|,( 1210
N
kkyaap   is given 

by (65); and ),|,( 221 vaap S  is given by (56). Evaluating this distribution for each value of θ  

requires efficient evaluation of the integral with respect to ],[ 21 aa . The difficulty of 

evaluating the integral depends on the complexity of the theoretical relationship between S  and 

],[ 21 aa , i.e., )(1 f  and )(2 f . It is generally problem-dependent and will not be further 

discussed here. 

 

6.6. Remarks on basic form 

For instructional purpose, if one insists on using the posterior distribution )|,( Dp υ  in (57) for 

making inference on θ  in Stage II, then one must use (19): 
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so that the prior information already used in Stage I is correctly removed in Stage II. To use this 

form, however, the prior distribution ),()( 21 aapp   must be obtained first from (59). 

Evaluating )(p  for each   involves evaluating an integral over ],[ 2vSθ . Unlike the 

integral in (61), this integral is more difficult to evaluate or approximate because the relationship 

between ],[ 21 aa  and θ  implied by ),( 211 aaf  and ),( 212 aaf  can be very complicated. 

Through the standard formulation, our theory shows that (66) and (67) gives the same 

distribution, which is non-trivial from the appearance of these expressions.  

 

7. Conclusions 

This paper has made several contributions that lay down the foundation of the Bayesian two-

stage system identification framework:  

1) general formulation of the posterior distribution in Stage II in terms of the identification 

results in Stage I and the structural prediction model in Stage II, as in (19); 

2) formulation of the double-counting principle that leads to the standard form of the posterior 

distribution in (29); see also Theorem 1;  

3) theoretical result regarding the role of the structural prediction error, see Proposition 1 and 

Section 5; 

These are fundamental discoveries that resolve the heuristic nature of the existing two-stage 

formulations in structural system identification. The following critical comments are in order:  

1) The form of the posterior distribution of the structural model parameters in Stage II is not 

subjected to heuristic choice. It is given by the product integral of the posterior distribution of 

the parameters in Stage I and the conditional distribution characterizing the relationship 

between the parameters in Stage I and II, as in (19) or (29).   

2) It has been argued previously [20][21] that in modal identification (Stage I) the prior 

distribution of the modal parameters (natural frequency, damping, etc.) can be assumed to be 

uniform because for sufficient data encountered in practice it is slowly varying compared to 
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the likelihood function. That is, even if a uniform prior distribution is used the identification 

results will be practically the same. In this paper the double-counting principle and the 

standard form in Section 4 now shows that a uniform prior distribution MUST be used in 

Stage I when the modal identification results are to be used conveniently for further 

identifying the structural parameters in Stage II. 
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Table 1. Nomenclature of two-stage Bayesian identification problem 

Parameter Descriptions 

D  Available data for Bayesian inference 

],[ PS θθθ   Parameters identified in Stage II, partitioned according to the role in 

the structural prediction model; Sθ  related to structural model 

prediction; Pθ  related to structural prediction error 

],[ υα   Parameters identified in Stage I,   related to θ , υ  not related to θ  

)(~ θ  Structural model prediction of   for given θ  

)(θp  Prior distribution of θ  

)(υp  Prior distribution of υ  

)|( θp  Conditional distribution of   given θ , formulated based on 

structural prediction model 

),|( υDp  Likelihood function used in Stage I, formulated based on data 

prediction model 
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Figure 1. Schematic diagram of two-stage Bayesian identification problem 
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