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Abstract 

A fundamental theory has been developed for a general two-stage Bayesian system 

identification problem in the companion paper (Part I). This paper applies the theory to 

the particular case of structural system identification using ambient vibration data. In 

Stage I, the modal properties are identified using Fast Bayesian FFT method. Given the 

data, their posterior distribution can be well approximated by a Gaussian distribution 

whose mean and covariance matrix can be computed efficiently. In Stage II, the structural 

model parameters (e.g., stiffness, mass) are identified incorporating the posterior 

distribution of the natural frequencies and mode shapes in Stage I and their conditional 

distribution based on the theoretical structural finite element model. Synthetic and 

experimental data are used to illustrate the proposed theory and applications. A number 

of factors commonly relevant to structural system identification are studied, including the 

number of measured degrees of freedom, the number of identifiable modes and sensor 

alignment error.  
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1 Introduction 
A general theory has been presented in the companion paper [1] for a two-stage Bayesian 

system identification problem. It fundamentally expresses the posterior probability 

density function (PDF) of structural model parameters in Stage II in terms of the posterior 

PDF of the modal parameters in Stage I. In this paper, the theory is applied to the 

identification of structural model parameters (e.g., stiffness, mass), which is the problem 

originally motivated the development of the general theory. The data is assumed to 

consist of digital acceleration time histories measured at a limited number of degrees of 

freedom (dofs) of the subject structure under ambient environment. The loading is 

unknown but assumed to be broadband random within the resonance band of the 

identified modes. This context is of high relevance in practice, as ambient vibration tests 

are becoming economically viable and commercially sustainable [2][3]. It is also of high 

scientific relevance because the identification uncertainty of modal parameters based on 

(output-only) ambient data is often significantly higher than their counterparts identified 

from properly managed free or forced vibration data. As mentioned in the companion 

paper, different variants of two-stage Bayesian formulations for structural system 

identification have been proposed, e.g., [4][5][6][7][8][9], although they all involve 

heuristics in the formulation of the likelihood function in Stage II. 

 

For clarity we first give an overview of the two-stage approach applied to structural 

identification problem in the context of the theoretical framework developed in the 

companion paper. Using ambient vibration data, the objective is to identify the set of 

structural model parameters θ  involved in the characterization of the finite element 

model of the real structure, e.g., stiffness, mass, boundary conditions, etc. In Stage I, Fast 

Bayesian FFT (Fast Fourier Transform) method is used for identifying the modal 

properties based on ambient vibration data [10][11][12][13]; see a recent review in [14]. 

The method is well-suited for ambient modal identification for its computational 

efficiency and assumption robustness. Operating in the frequency domain, the data D  

effectively consists of the FFT of the measured acceleration time histories within the 

resonance frequency bands of the modes selected by the analyst. As far as structural 
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system identification is concerned, the information content of this FFT data is equivalent 

to the original time domain data, because the FFTs in other frequency bands are 

irrelevant or difficult to model. Using only the FFT data in the selected frequency bands 

for identification significantly reduces the number of modal parameters to be identified 

simultaneously and requires minimal assumption on the ambient excitation.  

 

The full set of modal parameters α , from which an explicit likelihood function )|( αDp

can be derived, comprises the natural frequencies, damping ratios, partial mode shapes 

(i.e., confined to the measured dofs), the power spectral density (PSD) matrix of the 

modal forces and the PSD of the prediction error (arising from, e.g., sensor noise). With 

sufficient data, these parameters are globally identifiable and their posterior PDF can be 

well approximated by a Gaussian distribution with mean and covariance matrix that can 

be computed efficiently. Uniform (i.e., constant) prior distributions are used in practice 

for modal identification problems. As a result, the hypothetical posterior PDF )|(0 Dp α  

and the actual posterior PDF )|( Dp α  are identical. Within ],[ υα  , the set   for 

identifying the structural parameters in Stage II comprises the natural frequencies and 

partial mode shapes because they can be theoretically predicted by a structural (e.g., finite 

element) model. The set υ  comprises the remaining modal parameters, i.e., the damping 

ratios, PSD matrix of modal forces and the PSD of prediction error. As a property of 

Gaussian distribution, the marginal distribution )|(0 Dp   is also Gaussian, whose mean 

and covariance matrix can be directly taken from those of the full distribution )|(0 Dp α .     

 

This work focuses on the case when there is no structural prediction error. That is, the 

natural frequencies and mode shapes can be completely determined by the structural 

parameters so that ))(~()|( θθ  p  is a Dirac-Delta function centered at the 

theoretical structural model prediction )(~ θ . This scope is considered as it is consistent 

with the conventional scenario studied in the literature, providing a starting point for 

applying the general theory. Modeling )|( θp  in a non-trivial manner and incorporating 

its information for updating θ  requires substantially more consideration that deserves a 

separate line of research.  
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This paper is organized as follows. The structural modeling assumptions are first 

described, followed by an outline of Fast Bayesian FFT method in Stage I. Theoretical 

and computational issues in Stage II are discussed. A comparison with the conventional 

formulations is then given, followed by a summary of the whole procedure. Illustrative 

examples with synthetic and experimental data are presented to verify the method with 

applications. 

2 Problem context 
Consider a linear elastic structure, modeled by the conventional structural dynamics 

equation 

)()()()( tttt WKxxCxM          (1) 

where M , C , K , W  are the mass matrix, damping matrix, stiffness matrix and force 

vector, respectively. Assuming classical damping, the response can be expressed as a sum 

of modal contributions: 


i

ii tt )()( ux          (2) 

where iu  and i  are respectively the full mode shape and modal response of the i -th 

mode; the sum is overall all modes of the structure. The full mode shape iu  satisfies the 

generalized eigenvalue equation: 

iii MuKu
2          (3) 

where ii f 2  and if  are the natural frequency in rad/sec and in Hz, respectively. The 

modal response i  satisfies the uncoupled modal equation of motion: 

)()()(2)( 2 twttt iiiiiii           (4) 

where  

Muu

Wu

T

T

i
t

tw
)(

)(           (5) 

is the modal force. 
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The goal of the structural identification problem in this paper is to identify the structural 

parameters θ  from ambient vibration data of the as-built structure at a limited number of 

dofs. Only the stiffness matrix K  and the mass matrix M  are assumed to possibly 

depend on θ . This assumption arises from practical consideration in structural 

engineering where there is no acceptable means for modeling the damping of real 

structures.  The loading )(tW  is not measured but is assumed to be broadband random in 

the specific sense that the modal force )(twi  of the identified modes has a constant PSD 

within resonance frequency bands selected by the analyst.  

 

Let },...,1:ˆ{ NjRn
j y , abbreviated as }ˆ{ jy , denote the time domain acceleration 

data at n  measured degrees of freedom (dofs) of the structure; N  is the number of data 

points. The FFT }ˆ{ kF  of }ˆ{ jy  is defined as  










N

j

jk
N

kj

N

t

1

]
)1)(1(

2exp[ˆ
2ˆ iy F       (6) 

where 12 i ; kF̂  corresponds to frequency abscissa tNkk  /)1(f  for qNk ,...,1 ; 

t  is the sampling interval; qN  is the index corresponding to the Nyquist frequency, 

equal to the integer part of 2/1 N . Operating in the frequency domain, the data D  used 

for system identification effectively consists of the FFT within a number of disjoint 

frequency bands containing the modes that can be identified, i.e.,  

},...,1:{ )(
B

r nrDD          (7) 

where 
)(rD  denotes the collection of FFT }ˆ{ kF  in the r -th frequency band.  

 

In Stage I, the set of modal parameters that completely defines the distribution of D  is 

given by 

],[ υα             (8) 

Here   comprises the natural frequencies and partial mode shapes (i.e., confined to the 

measured dofs) 

},{ Φf            (9) 
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where f  and Φ  denote respectively the collection of all natural frequencies and mode 

shapes within all the selected bands. On the other hand, υ  consists of the remaining 

modal parameters  

},,{ eSSζυ             (10) 

where ζ , S  and eS  denote respectively the collection of the damping ratios, PSD of 

modal forces and PSD of prediction errors in all selected frequency bands.  

 

With little loss of generality, a uniform (constant) prior distribution is assumed for the 

modal parameters ],,[ eSSζυ   that are not related to the structural parameters θ . This is 

justified because for sufficient data often encountered in practice the likelihood function 

in the modal identification problem is fast varying compared to the prior distribution. On 

the other hand, the prior distribution for ],[ Φf  is not subjected to free choice 

because it is already determined by )(θp  and the conditional distribution )|( θp  

(structural prediction model) through  

 θθθ dppp )()|()(          (11) 

Nevertheless, according to the standard formulation, this PDF is immaterial as it is not 

involved in the computations.  

 

In the next two sections we shall discuss the formulation of the (hypothetical) posterior 

distribution )|(0 Dp   in Stage I and the conditional distribution )|( θp  that connects 

Stage I and II. These allow the posterior distribution )|( Dp θ  to be obtained in Stage II 

according to (29) in the companion paper: 

  dpDppDp )|()|()()|( 0 θθθ       (12) 

3 Modal identification (Stage I) 
In Stage I, the modal parameters },,,,{ eSSΦξfα   are identified from the data D , i.e., 

FFT within the resonance frequency bands of modes selected by the analyst. Although 

only the identification result of },{ Φf  is used in Stage II through )|(0 Dp  , the full 
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set of modal parameters ],[ υα   need to include },,{ eSSζυ   because only the 

likelihood function )|( αDp  has been derived in explicit analytical form.  

 

The frequency bands for modal identification can be easily selected by the analyst based 

on a smoothed (averaged) version of the singular value spectrum computed from the time 

history data, e.g., see Figure 1, where there are 3Bn  disjoint frequency bands. Within 

the r -th band, the FFT is modeled as 

kkk εFF̂           (13) 

where kF  is the theoretical modal response of the structure and kε  is the prediction error 

(arising from, e.g., channel noise) in the frequency domain. The statistical properties of 

both kF  and kε  depend on the modal parameters of the modes in the band.   

 

At frequency kf  within the r -th selected band, the theoretical modal response is 

assumed to consist of the contributing modes in the band only, i.e.,  





rm

i

r
ik

r
ik

1

)()(
ΦF     (within the r -th band) (14) 

where the sum is over the modes in the r -th band whose number is rm ; nr
i R

)(
Φ  

( rmi ,...,1 ) is the partial mode shape of the i -th mode in the r -th band; )(r
ik

  is the FFT 

of the theoretical modal response of the i -th mode in the r -th band at frequency index k , 

whose time domain counterpart satisfies (4).  

 

The prediction errors at different measured dofs are assumed to be independent and they 

have a constant PSD of 
)(r

eS  in the r -th band. That is, they need not be ‘white’ over the 

whole sampling spectrum (from DC up to the Nyquist frequency), but only ‘locally white’ 

in the selected frequency bands. This is a robust assumption and is one advantage of 

operating in the frequency domain rather than the time domain.  
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Let 
)(rD  denote the collection of the FFT data }ˆ{ kF  in the r -th frequency band. The set 

of modal parameters that completely characterizes the probability distribution of 
)(rD  is 

],,,,[ )()()()()()( r
e

rrrrr SSζΦfα         (15) 

where  

rmr

rm
rr Rff  ],...,[

)()(
1

)(
f         (16) 

rmr

rm
rr R ],...,[

)()(
1

)( ζ         (17) 

denote respectively the set of natural frequencies and damping ratios for the modes in the 

band; rmrmr C


)(
S  denotes the (Hermitian) PSD matrix of modal forces, assumed to 

be constant within the frequency band; RS r
e )(  denotes the PSD of prediction error, 

assumed to be constant within the band; and  

rmnr

rm
rr R


 ],...,[

)()(
1

)(
ΦΦΦ        (18) 

denotes the partial mode shape matrix, assumed to be normalized with unit norm, i.e., 

1||||
)()(2)(


r
i

Tr
i

r
i ΦΦΦ         (19) 

 

3.1 Likelihood function 
The likelihood function for modal identification in Stage I corresponds to the PDF of the 

FFT in the selected frequency bands for a given α : 

)|,...,()|(
)()1(
αα Bn

DDPDp         (20) 

It has been derived under asymptotic conditions for sufficiently high sampling rate and 

long data duration, which are often justified in applications [14][15][16]. Assuming 

stationary data, for a given α , the FFT data },...,1:{ )(
B

r nrD   on different non-

overlapping frequency bands are independent. This implies that 





Bn

r

rDpDp

1

)( )|()|( αα         (21) 

Since the distribution of 
)(rD  depends on )(r

α  only (see (14)), 
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)|()|( )()()( rrr DpDp αα          (22) 

and so 





Bn

r

rrDpDp

1

)()( )|()|( αα         (23) 

 

The likelihood function )|( )()( rrDp α  corresponds to the one for a single frequency band: 

),,,,|}:ˆ({)|( )()()()()()()( r
e

rrrr
rk

rr IkpDp SSΦζfα  F     (24) 

where rI  denotes the collection of the frequency indices in the r -th frequency band. It 

can be derived based on the following facts. It can be shown that the FFT kF̂  at different 

frequencies are asymptotically independent. The real and imaginary part of kF̂  follows a 

Gaussian distribution with zero mean and a covariance matrix that can be written in terms 

of )(r
α . The result is given by  

)](exp[)|( )()()()( rrrr LDp αα         (25) 

where 










rIk

k
r

kk

rIk

r
k

rrL FF ˆˆ|det|ln)(
1)(*)()()(

EEα      (26) 

is the ‘negative log-likelihood function’ (NLLF); ‘*’ denotes a complex conjugate 

transpose and ‘ det ’ denotes the determinant; and  

nn
n

r
e

Trr
k

rr
k

CS  IΦHΦE
)()()()()(       (27) 

is a Hermitian matrix. In (27), n
n RI  denotes the identity matrix; rmrmr

k
C




)(
H  is 

the (Hermitian) transfer matrix of the modes in the r -th band and its ),( ji -entry is given 

by: 

1)()(2)(1)()(2)()()(
)]2()1[()]2()1)[(,(),(  

r
jk

r
j

r
jk

r
ik

r
i

r
ik

rr
k

jiji  iiSH  (28) 

where  

k

r
ir

ik

f

f

)(
)(
            (29) 



10 

 

 

3.2 Hypothetical posterior distribution 
Based on the standard form in (29) of the companion paper, the (hypothetical) posterior 

PDF )|(0 Dp α  of the modal parameters in Stage I assuming a uniform prior distribution 

for   is relevant in the two-stage identification process. Assuming a uniform prior 

distribution for υ  it is simply directly proportional to the likelihood function )|( αDp . 

Using (23) and (25), it can be expressed as  

])(exp[)|()|(

1

)()(

1

)()(
00 




Bn

r

rr
Bn

r

rr LDpDp ααα     (30) 

where )( )()( rrL α  is given by (26). 

 

Assuming each )(r
α  is globally identifiable (otherwise the modes will not be included for 

structural identification), the posterior PDF of each 
)(r

α  in (30) can be well-approximated 

by a Gaussian distribution centered at the most probable value (MPV) )(ˆ r
α  and with a 

covariance matrix 
)(r

C , i.e.,   

),ˆ;()|( )()()()()(
0

rrrrr Dp Cααα         (31) 

 

Mathematically, the MPV )(ˆ r
α  minimizes the NLLF in (26) subjected to norm 

constraints on the mode shapes in (19). The covariance matrix )(r
C  is equal to the 

inverse of the Hessian of the NLLF evaluated at the MPV, ignoring the principle 

components along the most probable mode shape directions [17]. Efficient algorithms for 

computing the MPV and the covariance matrix has been developed [10][11][12][13].  

 

Substituting (31) into (30) gives 





Bn

r

rrrDp

1

)()()(
0 ),ˆ;()|( Cααα         (32) 
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which is a joint Gaussian PDF for ],...,[
)()1( Bn

ααα  . Note that },...,1:{ )(
B

r nr α  for 

different bands are independent and within each band the mean and covariance matrix of 

)(r
α  are given by )(ˆ r

α  and )(r
C , respectively.  

 

Due to the property of Gaussian distribution, the marginal posterior PDF of 

Bn
r

r
1

)( }{     (a subset of the full set ],[ υα  ) is also Gaussian: 





Bn

r

r
D

rrDp

1

)()()(
0 ),ˆ;()|( C        (33) 

where )(ˆ r  and )(r
DC  denote the MPV and covariance matrix of  , respectively. They 

can be directly extracted from the corresponding partition of )(ˆ r
α  and 

)(r
C . Equation (33) 

can be written as 

)](exp[)|( I0  LDp          (34) 

where 









Bn

r

rr
D

Trr
Bn

r

r
DL

1

)()(1)()(

1

)(
I )ˆ()ˆ(

2

1
detln

2

1
)(  CC    (35)  

Recall that 
)(ˆ r  denotes the MPV of the natural frequencies and mode shapes in the r -th 

band; and DC  denotes the corresponding posterior covariance matrix. These are 

determined as part of the modal identification result in Stage I. The function )(I L  will 

be directly used for computation in Stage II later.  

4 Structural model identification (Stage II) 
In Stage II the structural modal parameters θ  are identified based on the structural 

prediction model in terms of )|( θp  and the identification result in Stage I in terms of 

)|(0 Dp  . In this work θ  is assumed to characterize   through the stiffness matrix K  

and mass matrix M  only. The dependence of the damping matrix C  on θ  is not 

modeled. This is because in practice the interest is on the damping ratios ζ , which have 

already been identified in Stage I. Also, for full-scale structures the damping matrix is 
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much more difficult to model from mechanical principles than the stiffness matrix or 

mass matrix. 

 

As mentioned in the introduction, the natural frequencies and mode shapes are assumed 

to be completely determined by the structural model parameters, in the sense that the 

conditional PDF )|( θp  is given by a Dirac-Delta function: 

))(~()|( θθ  p          (36) 

where  

)](
~

),(
~

[)(~ θΦθfθ            (37) 

comprises the theoretical natural frequencies )(
~
θf  and partial mode shapes )(

~
θΦ  

determined from the eigenvalue equation in (3) for given θ . In the current case, there is 

no parameters characterizing the uncertainty of the structural prediction error model and 

so in the context of Proposition 1 in the companion paper, θθ S  and Pθ  is null. 

Substituting (34) and (36) into the standard form (12), the posterior distribution )|( Dp θ  

of the structural parameters is given by, 

)](exp[)(),ˆ);(~()()|( II

1

)()()(
θθCθθθ LppDp

Bn

r

r
D

rr  


    (38) 

where 







Bn

r

rrr
D

TrrL

1

)()(1)()()(
II ]ˆ)(~[]ˆ)(~[

2

1
)(  θCθθ     (39)  

Note that the log-determinant term 2/detln
1

)(
 

Bn

r

r
DC  has been omitted in the above 

expression because it does not depend on θ . The form of )(II θL  resembles some 

measure-of-fit function between the MPV of the modal parameters ̂  and its model 

counterpart )(~ θ . The quadratic nature of the discrepancy ]ˆ)(~[ )()( rr  θ  stems from 

the Gaussian nature of the posterior distribution of modal parameters in Stage I.   

 

In the general theory the conditional distribution )|( θp  can be a nontrivial probability 

distribution based on modeling by the analyst. The case considered here reflects that the 
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natural frequencies and mode shapes in Stage I are directly related to the structural model 

parameters without any structural modeling error. This is similar to what is considered in 

the existing literature. Nevertheless, the general theory provides a fundamental means for 

incorporating the structural modelling error through )|( θp . This modeling is related to 

the fidelity of the structural model under question and is left for future work.   

 

4.1 Computational issue 

Due to the norm constraint of the mode shapes, the covariance matrix )(r
DC  is singular 

with null vectors parallel to the most probable mode shapes [17]. For computational 

purpose it is necessary to bypass the numerical problems arising from evaluating the 

inverse 
1)( r

DC  in (39). This can be done by evaluating the inner product by summing 

contributions along the eigen basis of 
1)( r

DC . The details are explained as follows. 

 

First note that the covariance matrix is equal to the inverse of the Hessian matrix of the 

NLLF in Stage I where the components along the most probable mode shape directions 

are omitted. If the r -th band contains rm  modes, )(r
DC  will have rm  zero eigenvalues 

with eigenvectors equal to the rm  most probable mode shapes obtained in Stage I. It can 

thus be expressed as 






)(

1

)()()()(

r
pn

rmi

Tr
i

r
i

r
i

r
D v bbC          (40) 

where  },...,1:{ )()( r
pr

r
i nmiv   are the non-zero eigenvalues of )(r

DC  with 

corresponding eigenvectors },...,1:{ )(
)(

)( r
pr

r
pnr

i nmiR b ; nmmn rr
r

p )(  is the 

number of modal parameters arising from the frequencies and mode shapes of the r -th 

selected band. Ignoring the components along the most probable mode shape directions, 

i.e., the rm  null vector directions, the inverse of )(r
DC  is given by 
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





)(

1

)()(1)(1)(

r
pn

rmi

Tr
i

r
i

r
i

r
D v bbC        (41) 

Substituting this into (39), 

 
 




Bn

r

r
pn

rmi

rrTr
i

r
ivL

1

)(

1

2)()()(1)(
II ]}ˆ)(~[{

2

1
)(  θbθ      (42) 

which no longer involves the inverse of the singular matrices },...,1:{
)(

B
r

D nr C . As a 

remark, 
1)( r

DC  is just the partition of Hessian of the NLLF in Stage I corresponding to 

)(r ; }{
1)( r

iv  and }{
)(r

ib  are the eigenvalues and eigenvectors of the Hessian. 

4.2 Posterior statistics of structural model parameters 
The posterior statistics of θ  can be determined from its posterior distribution in (38) 

where the NLLF is given by (42). In contrast to the modal identification problem in Stage 

I, the computational effort depends on whether the FFT data is sufficient for determining 

θ  or not. Specifically, if there exists a unique value of θ  that minimizes the NLLF, then 

the situation is ‘globally identifiable’ [18].  In this case, the MPV of θ  can be obtained 

by numerically minimizing the NLLF in (42) with respect to θ  using conventional 

optimization algorithms (e.g., simplex search). Under a second order Taylor 

approximation of the NLLF with respect to θ  about the MPV, the posterior covariance 

matrix of θ  can be determined as the inverse of Hessian of the NLLF at the MPV. 

 

If the problem is not globally identifiable, the NLLF can either have multiple local 

(isolated) minima (i.e., locally identifiable) or even a manifold of stationary points 

(unidentifiable). Conventional optimization algorithms cannot be used for finding the 

critical points/regions that characterize the posterior distribution [19][20]. More advanced 

numerical tools such as Markov Chain Monte Carlo (MCMC) [21][22][23][24]  may be 

pursued. Whenever feasible, it is better to avoid unidentifiable situations by choosing a 

simpler model, designing a better instrumentation layout, increasing the number of 



15 

 

measured dofs, etc. Despite the available advanced tools, studies on unidentifiable cases 

have so far been mostly of academic nature.  

5 Comparison with conventional formulations 
As mentioned in the introduction, Bayesian two-stage methods have been suggested 

previously. A common heuristic formulation (with variants) reflects in the likelihood 

function the discrepancy between the identified MPV and structural model prediction of 

the natural frequencies and partial mode shapes. The MPV of natural frequencies and 

mode shapes ( if̂  and iΦ̂ ) are assumed to be independent and related to their theoretical 

model counterparts ( )(
~
θif  and )(

~
θΦi ) by a prediction error, namely, for the i -th mode,  

iiii

iii
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dθΦθΦ

θ
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~

)(ˆ
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~ˆ

         (43) 

The term Rei   is the prediction error for the natural frequency, assumed to be 

independent Gaussian among all modes, with zero mean and standard deviation fi . The 

term n
i Rd  is the prediction error for the mode shape, assumed to be independent 

Gaussian among all measured dofs and modes, with zero mean and standard deviation 

i . The factor ia  is chosen to scale the model mode shape for maximum likelihood (for 

given θ ). The resulting posterior distribution is cast in the form )](exp[ θJ  where 

  

i

iiii

i

iifi affJ 2222 ||)(
~

)(ˆˆ||
2

1
)](

~ˆ[
2

1
)( θΦθΦθθ     (44) 

with the sums being over all identified modes; ||||  denotes the Euclidean norm; 1||ˆ|| iΦ

and 1||)(
~

|| θΦi ; 

)(
~ˆ)(ˆ θΦΦθ i

T
iia           (45) 

is the optimized scaling constant that minimizes J  for given θ . In [4][5] the first term 

was written as the squared difference of the squared natural frequencies but it is similar 

provided that the parameter fi  is assigned consistently. For implementation the values 



16 

 

of fi  and i  in (44) need to be set a priori, e.g., based on sample standard deviation of 

the corresponding MPV obtained from tests of similar configuration. 

 

Expanding the norm in (44) and substituting (45), it can be readily shown that 

  

i

i
T
ii

i

iifi ffJ })](
~ˆ[1{

2

1
)](

~ˆ[
2

1
)( 2222

θΦΦθθ      (46) 

Note that ]1,1[)(
~ˆ θΦΦ i

T
i  is the modal assurance criteria (MAC) between the model 

and most probable mode shape, assuming both have a unit norm.  

 

In a more general setting, the measure of fit function )(θJ  has been formulated as a 

weighted sum of normalized discrepancies in the frequencies and mode shapes among 

different modes [7][8]. It is found that the choice of the weights is closely related to the 

prediction error variance of the mode and they do have a significant effect on the MPVs. 

Even if the MPVs are insensitive to the weights, the same need not be true for the 

resulting posterior covariance matrix.  

5.1 Underlying philosophy 
The formulation proposed in this work and the conventional formulation adopt the same 

data prediction model in Stage I to relate the measured data (e.g., acceleration) to the 

theoretical dynamic response that depends on the modal parameters α . This allows the 

likelihood function )|( αDp  to be explicitly derived, which yields the posterior 

distribution of α  in Stage I.  

 

The major difference between the proposed and conventional formulation lies in the 

philosophy behind the structural prediction error that provides the link between Stage I 

and II. The conventional formulation adopts a structural prediction error model relating 

the posterior MPV of the modal parameters ̂  ( ]ˆ,ˆ[ Φf ) to their theoretical model 

counterpart )(~ θ  ( )](
~

),(
~

[ θΦθf , see (43)). The rationale behind this is to treat the MPV 

of the modal parameter as a directly observed ‘data’ of the model counterpart. Modeling 

in this manner, the prediction error should generally account for both the uncertainty of 
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̂  in Stage I and structural modeling error. The former is related to identification 

uncertainty in Stage I, though in a somewhat frequentist sense since it is associated with 

the descriptive statistic ̂  rather than directly with  . The latter is related to fidelity of 

the finite element model. In this context, deriving from first principles the distribution of 

the structural prediction error and hence the distribution of ̂  for given θ  (required for 

Stage II) is highly non-trivial. Heuristics are therefore involved in assuming a reasonable 

distribution conducive for computations. As it turns out, the existing conventional 

formulations address mainly the identification uncertainty of in ̂  rather than the 

structural modeling uncertainty.  

 

Casting a prediction error model on the descriptive statistics rather than on the parameter 

itself, as in the conventional formulations, distorts Bayesian probability logic. After all, 

the modal properties  , i.e., the natural frequencies and mode shapes, are not directly 

‘observed’. The MPV ̂  is just a descriptive statistic convenient for characterizing the 

posterior distribution of   in Stage I. It is   that is identified, not ̂ .  

 

The proposed formulation adopts a more fundamental means of linking Stage I and II. It 

casts the structural prediction error model directly on the uncertain parameters   and θ . 

Based on this, the conditional distribution )|( θp  can be rigorously derived, which is 

the fundamental mathematical object that describes structural modeling uncertainty. 

Methodologically, this conditional distribution does not depend on the identification 

uncertainty of   in Stage I, making it easier to be formulated based on first principles.   

The application of the general theory to structural system identification based on ambient 

data in this paper specifically assumes no structural prediction error, which can be stated 

explicitly in the formulation of )|( θp  independent of the identification uncertainty of 

  in Stage I implied by )|( Dp  . Finally, the information in )|( θp  is incorporated 

with the posterior distribution of   in Stage I and other prior information to give the 

posterior distribution of θ , in strict accordance with probability logic. No frequentist 

concepts are involved.  
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5.2 Similar quantitative results under specific conditions 
Despite the criticisms in the last section, we provide an argument here that shows the 

conventional formulation yields identification results that are quantitatively similar to the 

proposed formulation when  

1) there is no structural prediction error, i.e., ))(~()|( θθ  p ;  

2) the modes are well-separated; 

3) the ambient data has high modal signal-to-noise ratios; 

4) the parameters }{ fi  and }{ i  are assigned based on the posterior uncertainty of the 

natural frequencies and mode shapes in Stage I, specifically, according to (52). 

 

That is, although the existing formulations are heuristic, they are well-thought. The 

intention here is to provide a meeting point for the proposed and conventional 

formulation so that future developments and results of the former can be explored 

leveraging on the past experience accumulated with the latter. 

 

Specifically, we show that under the above conditions the NLLF )(II θL  in (39) reduces 

to )(θJ  in (46). The first condition has been assumed throughout this paper.  Under the 

second and third condition, the posterior uncertainty of the modal parameters obey the 

uncertainty laws of ambient modal identification [25][26], in which case )(II θL  reduces 

to the same form as )(θJ . The last condition matches their coefficients.   

 

For well-separated modes each band contains only one mode. When the modal s/n ratio is 

high, the posterior covariance matrix of the modal parameters is given by their 

uncertainty laws. In this case, the natural frequencies and modes shapes are independent. 

The posterior covariance matrix DC  in (39) reduces to a block-diagonal matrix. For the 

i -th mode it is asymptotically given by 
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where 2ˆ fi  is the posterior variance of the natural frequency if ; and 
iΦĈ  is the posterior 

covariance matrix of iΦ  given by 

]ˆˆ[
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
        (48) 

and 
2

i
  is the sum of eigenvalues of 

iΦĈ . Substituting (47) into (39) gives 
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Due to the norm constraint 1|||| iΦ , 
iΦĈ  is singular along the direction iΦ̂  and its 

inverse should be evaluated ignoring this direction. This gives 
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Substituting into (49) gives 
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Comparing (51) and (46), we see that )()( II θθ LJ   when the prediction error variances 

in the conventional formulation are assigned as, for all the identified modes, 
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Again, the above only provides an argument to suggest that the conventional formulation 

can give reasonable identification results under the specific conditions mentioned in the 

beginning of this section. Because of their heuristic nature, however, they are not 

recommended.  
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6 Summary of procedure 
The proposed two-stage Bayesian structural system identification procedure, assuming no 

structural prediction error and based on ambient vibration data, is presented as follows. 

The overall objective is to obtain the posterior statistics of the set of structural model 

parameters θ  given the FFT data on selected frequency band(s) of the ambient 

acceleration data }ˆ{ jy  at the measured dofs. 

 

Stage I 

For each frequency band, Bnr ,...,1 , perform Bayesian modal identification to 

determine the MPV ]ˆ,ˆ[ )()()( rrr
Φf  and the posterior covariance matrix 

)1()1()(ˆ 


nrmnrmr
D RC of the natural frequencies and mode shapes. Details are referred 

to [10][11] for well-separated modes and [12][13] for general multiple (possibly close) 

modes. 

 

Stage II 

Determine the posterior statistics of the set of structural model parameters θ  based on 

the NLLF in (42). For globally identifiable cases, the posterior statistics may be obtained 

in terms of the MPV and the posterior covariance matrix of θ . The MPV can be found 

by numerically minimizing the NLLF. The posterior covariance matrix is equal to the 

inverse of the Hessian of the NLLF with respect to θ  and evaluated at the MPV. Finite 

difference method may be used if analytical expressions are not available. For globally 

unidentifiable cases, more advanced numerical tools such as MCMC [23] may be used. 

Practically it is better to avoid unidentifiable situations by choosing a simpler model or 

improving the test configuration, e.g., better sensor locations, more sensors, etc.  

7 Illustrative applications 
Two examples are presented to illustrate the proposed method and its applications. The 

first example is based on synthetic data and serves to verify the proposed method. The 

second example is based on experimental data and illustrates application in the real 

setting. The examples are all globally identifiable and so the posterior distribution of the 
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parameters can be characterized through their posterior MPV and covariance matrix. 

Unidentifiable cases require special attention and are out of the scope of this section. 

Unless otherwise stated, a uniform prior distribution is assumed for the modal parameters 

(Stage I) and structural model parameters (Stage II).  

7.1  One-storied shear building (synthetic data) 
Consider a one-storied shear building in Figure 2 supported on four columns, C1 to C4. 

The roof has a mass of 500 tons. Its mass moment of inertia about the center of mass is 

calculated to be 33333 2mton  . The mass of the columns are assumed to be negligible. 

The lateral stiffness of the columns are shown in Table 1. Assuming rigid floor, the 

structure has three dofs, i.e., translations along the x and y direction and a rotation. The 

natural frequencies are calculated to be 8.016Hz (x-translation), 11.027Hz (y-translation) 

and 16.816Hz (rotation). Classical damping is assumed with a damping ratio of 1% in all 

modes. The building is subjected to ambient excitation at the roof modeled by 

independent and identically distributed (i.i.d.) Gaussian white noise in the x, y and 

rotational direction, with a one-sided root PSD of 1 HzN / , 0.9 HzN /  and 6

HzNm / , respectively. Calculated using a sampling rate of 200Hz, the resulting 

acceleration response is in the order of a few tens of Hzg /  at resonance. The 

acceleration data is contaminated by measurement noise modeled by Gaussian white 

noise with a root PSD of 2 Hzg / .  

7.1.1 Nominal case 
We first consider a nominal scenario, based on which further discussions are expanded 

later. In this case, horizontal bi-axial acceleration measurement for 180 seconds is 

assumed to be available at the four columns on the roof as shown in Figure 2, giving a 

total of 8 measured dofs. Figure 1 shows the root PSD and root singular value (SV) 

spectra calculated using the ambient data. These smoothed (averaged) spectra are used 

for visualization only. They are not involved in the Bayesian modal identification process 

as the raw FFTs are used. In Figure 1, there are clear spectral peaks indicating structural 

modes near 8Hz, 11Hz and 17Hz. It is apparent that the noise floor in the PSD is about 2

Hzg / , which checks with the value assumed. In the SV spectrum the number next to 
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each peak shows the mode number. The horizontal bar shows the frequency band whose 

FFTs is used for identifying the mode within the band. The circle indicates the initial 

guess of natural frequency used for numerical optimization in the search of the MPV. 

Modal identification is performed for each band separately.  

Table 2 shows the identification result for the modal parameters (Stage I) in terms of their 

posterior most probable values (MPV) and coefficient of variation (c.o.v.=standard 

deviation/MPV). Their ‘exact’ values used for generating the data are also shown. The 

MPVs are close to their exact values in a manner consistent with their posterior c.o.v.s. 

The Modal Assurance Criteria (MAC) between the identified and exact mode shapes are 

also shown in the table under the column ‘MAC’. They are all very close to 1, suggesting 

a close agreement. The last column in the table quantifies the mode shape uncertainty in 

terms of the complement of the Expected MAC (EMAC) value (the lower the better) [17]. 

The EMAC is computed based on a single set of data only and it does not require 

information of the ‘exact’ mode shape. Generally, the posterior uncertainty of the natural 

frequencies and mode shapes are much smaller than those of the damping ratios.  

 

The modal identification results are next used for identifying the interstory stiffness. The 

mass properties are assumed to be known and equal to the values that generated the data. 

The structural model used for identification is a simplified version of the original 

structure through the following parameterization based on the nominal values in Table 1 

(all in kN/mm):  
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Here,  

],,,[
2121 yyxx θ         (54) 

is the set of (dimensionless) structural model parameters to be identified in Stage II. All 

the three modes identified in Stage I are used for identifying θ  in Stage II.  
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Figure 3 summarizes the identification results in Stage II. Each parameter is shown with a 

dot at the MPV and an error bar covering +/- 2 posterior standard deviations. The dashed 

line shows the exact value. The error bars cover the exact value in all cases, suggesting 

that there is no bias in the identification. To examine whether the most probable 

structural model in Stage II results in modal properties consistent with the identification 

results in Stage I, Figure 4 shows the natural frequencies of the most probable structural 

model (‘O’), the identification result in Stage I (dot and +/- 2 standard deviation error bar) 

and the exact value that generated the data (dashed line). The crosses are within the error 

bars and almost coincide with the dots, reflecting a good agreement in the modal 

properties between Stage I and Stage II. This is further confirmed by Figure 5 that 

compares the most probable mode shapes in Stage I and the mode shapes resulting from 

the most probable structural model in Stage II. Their MAC is very close to 1, typically in 

excess of 99%. 

 

7.1.2 Effect of alignment error 

We next investigate the effect of sensor alignment error on the identification of the 

stiffness parameters. This is motivated by the problems encountered in real situations 

where alignment error is inevitable. Let u  and v  denote the acceleration at a given point 

along the x and y direction, respectively. When subjected to an alignment error of   

(clock-wise positive, in radian), the measured acceleration data û  and v̂  along the x and 

y direction are respectively given by 





cossinˆ

sincosˆ

vuv

vuu




         (55) 

A random alignment error   uniformly distributed between +/- 10 degree is introduced 

to the synthetic data (independent for different bi-axial sensors), in addition to the sensor 

noise considered in the nominal case. This introduces error in the mode shapes but not the 

natural frequencies.  

 

Figure 6 shows the identified stiffness in Stage II, in a manner analogous to Figure 3. 

Different from Figure 3, the error bars do not cover the dashed lines, reflecting a potential 
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bias. This is thought to be due to the alignment error. Figure 7 compares the most 

probable mode shapes in Stage I and the theoretical mode shapes resulting from the most 

probable structural model in Stage II. The mode shapes on the right column satisfy rigid 

floor assumption, as they are calculated from the most probable structural model. The 

same is not true for the most probable mode shapes on the left column, as the data they 

are identified from are contaminated by alignment error. Note that the identified mode 

shapes have similar posterior uncertainty (not presented here) as their counterparts in 

Figure 5 because the alignment error does not change the spectral characteristics of the 

data used for modal identification in Stage I. There is no structural model within the 

model class considered in Stage II that will have mode shapes fitting reasonably well the 

identified mode shapes in Stage I, however. The most probable structural model in Stage 

II tries to accomplish this within the model class and this leads to bias.    

7.2 Laboratory shear frame (real experimental data) 
The proposed method is next investigated with real experimental data from a laboratory 

shear frame model as shown in Figure 8(a). The story heights are (from bottom to top) 

858mm, 571mm and 555mm. All column sections measure 5mm by 25mm. The picture 

shows the weak (x) direction of the frame. Each floor measures 450mm×280mm×25mm  

and weighs 25.2 kg. The mass moment of inertia is calculated to be 0.59
2mkg  . 

Assuming an elastic modulus of 
211 /1055.1 mN , the interstory stiffness along the weak 

and strong directions are calculated and shown in Table 3.  

7.2.1 Modal identification (Stage I) 
The acceleration at the four corners of each floor were measured bi-axially along the 

horizontal direction, resulting in 24 measured dofs. Digital acceleration time history data 

of 600 seconds duration were originally acquired at 2048Hz and later decimated by 8 to 

256Hz for modal identification. Figure 9 shows the root PSD and root SV spectra of the 

measured data. The nature of the mode associated with each spectral peak is indicated, 

e.g., ‘TX2’ for the second translational mode along the x direction and ‘R3’ for the third 

rotational mode. The modal identification results are shown in Table 4. The most 

probable mode shapes are shown in Figure 10. Generally the modes are well-identified 

and their identification uncertainty is small. As a remark, the mode at about 35Hz in 
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Figure 9 is excluded from analysis because it is found not to be associated with shear 

building dynamics considered within the structural model class in Stage II.       

7.2.2 Structural model identification (Stage II) 
In Stage II, the stiffness of the columns are identified. The mass properties are assumed 

to be equal to the nominal properties of the floors, ignoring the mass of the columns. The 

lateral stiffness of the four columns in each story are assumed to be identical and equal to 

a quarter of the total interstory stiffness. For the i -th story ( 3,2,1i ), the interstory 

stiffness along the x direction, xik , and y direction, yik , are parameterized by  
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where xik  and yik  denote respectively the nominal value of interstory stiffness along the 

x and y direction as given in Table 3. Here,  

],,,,,[ 321321 yyyxxx θ        (57) 

is the set of (dimensionless) structural model parameters to be identified in Stage II. 

7.2.3 Nominal case 
In the nominal case, the data at all the 24 measured dofs are used for modal identification 

in Stage I and model identification in Stage II. Table 5 shows the identification results in 

Stage II.  Except for 1x , the stiffness parameters generally have a MPV close to 1 with a 

small c.o.v., reflecting that the actual stiffness properties are similar to what were 

predicted based on the available nominal information. The abnormally low value of 1x  

may be attributed to the reduction in stiffness due to the hole in the column (Figure 8(b)), 

which has been ignored in the calculation of the nominal stiffness. The posterior c.o.v. of 

the stiffness parameters are all very small. This is attributed to the small posterior c.o.v. 

of the modal parameters in Stage I.   

7.2.4 Effect of the number of identified modes 
We next investigate the effect of the number of modes used for structural model 

identification in Stage II. For this purpose, the number of modes included in the NLLF 

(39) in Stage II is incrementally increased, starting from the lower modes. Figure 11 

shows the identification results in terms of the most probable values (dots) and error bars 
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covering +/- 2 standard deviations. For the stiffness in the x (weak) direction, e.g., 1x , 

the posterior uncertainty is significantly reduced as the number of modes is increased 

from one to two. Starting from four modes there is little change in the identification 

results. This may be attributed to the fact that the three modes along the x-direction 

correspond to modes 1, 2 and 4, and so the effect of the additional information after four 

modes is marginal. The effect of adding modes on the identification result of the stiffness 

along the y-direction is more significant, recognizing that the three modes (TY1, TY2, 

TY3) correspond to modes 3, 6 and 8. The stiffness along the y-direction is not identified 

when only up to the first two modes (TX1, TX2) are used because in that case they 

cannot be identified. 

7.2.5 Effect of the number of measured dofs 
We next investigate the effect of the number of measured dofs. For this purpose, we 

perform Stage I and Stage II for data with different measured dofs. In all cases the first 

six modes are included for identification. The identification results of the stiffness 

parameters are shown in Figure 12. Case 1 corresponds to the nominal case in Section 

7.2.3 where the data at all the four columns and all floors are used, i.e., a total of 24 

measured dofs. Case 2 reduces the number of measured dofs by half by using only the 

data on the two columns on the left of Figure 8(a). From Figure 12, this leads to a slight 

increase in the posterior uncertainty in the stiffness parameters but no significant change 

in their MPVs. Case 3 to Case 5 further reduce the number of dofs by using the data on 

only two floors. In all these cases it is found that the identification results can differ 

significantly depending on the information used. The error bars in different cases do not 

necessarily overlap each other.  

8 Conclusions 
A fundamental two-stage formulation for structural system identification has been 

presented in this work where the modal properties are identified using Fast Bayesian FFT 

method with ambient data. The structural prediction error is fundamentally quantified in 

terms of the conditional distribution of the modal parameters for given structural model 

parameters, which can be formulated independent of the identification uncertainty of the 
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modal parameters. In contrast with the conventional formulation, the resulting posterior 

distribution of the structural parameters is in strict accordance with Bayesian probability 

logic without heuristics or frequentist concepts. Although the method in this paper 

focuses on the case of ambient data, it can be readily adapted to the case of identification 

with known input excitation within the general framework developed in the companion 

paper. 

 

The proposed method has been investigated using synthetic and laboratory data. Studies 

have been carried out to illustrate the effect of available information in terms of the 

number of measured dofs and the number of modes. The results reveal that the structural 

model identification results in Stage I can different significantly depending on the 

information (e.g., modes, measured dofs) used for identification. Bearing in mind that the 

posterior distribution of the model parameters are always conditional on the model used, 

this can be a reflection of structural modeling error, which has been assumed to be zero in 

the study. One natural future direction would be to incorporate structural modeling error 

through the conditional distribution )|( θp  in the general framework.  
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Table 1 Lateral stiffness of columns, one-storied building 

 

Column Direction x (kN/mm) Direction y (kN/mm) 

1 400 600 

2 250 600 

3 250 600 

4 400 600 
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Table 2 Identified modal parameters (Stage I), one-storied building, nominal case 

Mode 

Natural frequency (Hz) Damping ratio (%) Mode shape 

Exact 

Identified 

Exact 

Identified 

MAC 

1-EMAC 

(×10-3) 
MPV 

c.o.v. 

(%) 
MPV 

c.o.v. 

(% ) 

1 8.016 8.017 0.12 1.00 0.90 13.83 0.9998 0.360 

2 11.027 11.036 0.11 1.00 1.03 11.44 0.9997 0.348 

3 16.816 16.813 0.09 1.00 1.11 8.50 0.9999 0.112 
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Table 3 Nominal value of interstory stiffness, laboratory frame 

Story Direction x (N/mm) Direction y (N/mm) 

1 3.07 76.69 

2 10.41 260.18 

3 11.33 283.34 
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Table 4 Identified modal parameters (Stage I), laboratory frame 

Mode Nature 

Natural frequency Damping ratio 
Mode 

shape 

MPV 

(Hz) 
c.o.v. (%) 

MPV 

(%) 
c.o.v. (%) 

1-EMAC 

(×10-6) 

1 TX1 0.808 0.09 0.25 39.3 945.9 

2 TX2 3.523 0.03 0.12 26.0 12.5 

3 TY1 4.822 0.02 0.06 29.6 6.8 

4 TX3 5.902 0.02 0.11 20.9 5.9 

5 R1 7.105 0.02 0.15 16.0 2.0 

6 TY2 17.659 0.01 0.13 11.2 17.0 

7 R2 26.373 0.02 0.25 6.6 3.5 

8 TY3 31.489 0.01 0.07 11.0 6.7 

9 R3 45.861 0.01 0.12 7.1 1.1 
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Table 5 Identified stiffness parameters (Stage II), laboratory frame, nominal case 

Story   

MPV (c.o.v.) 

 

MPV (c.o.v.) 

1 0.7001 (0.21%) 1.0152 (0.03%) 

2 1.0107 (0.08%) 1.1829 (0.06%) 

3 1.0776 (0.07%) 1.1180 (0.06%) 

  

i xi yi
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Figure 1 Root PSD and root SV spectra, one-storied building 
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Figure 2 Plan view of one-storied building 
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Figure 3 Identified stiffness parameters (Stage II), one-storied building, nominal case 
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Figure 4 Comparison of natural frequencies. Identification results (Stage I, dot and +/-2 

standard deviation error bar), most probable structural model (Stage II, ‘O’), and exact 

value (dash line) 
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Figure 5 Comparison of mode shapes, one-storied building, nominal case. Left – MPV 

identified in Stage I; Right – resulting from the most probable structural model in Stage II 
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Figure 6 Identified stiffness parameters in Stage II, one-storied building, with alignment 

error 
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Figure 7 Comparison of mode shapes, one-storied building with alignment error. Left – 

MPV identified in Stage I; Right – resulting from the most probable structural model in 

Stage II 
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(a) (b) 

Figure 8 Laboratory model. (a) Overview; (b) Hole in the front left column on the first 

floor. 
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Figure 9 Root PSD and root SV spectra, laboratory frame 
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Figure 10 Most probable mode shapes, laboratory frame 
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Figure 11 Identified stiffness parameters (MPV and +/- 2 standard deviations) based on 

different number of modes 
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Figure 12 Identified stiffness parameters (MPV and +/- 2 standard deviations) based on 

different measured dofs, including the first six modes. Case 1: four columns, 1-3/F; Case 

2: two columns on the left, 1-3/F; Case 3: two columns on the left, 1/F & 2/F; Case 4: 

two columns on the left, 1/F & 3/F; Case 5: two columns on the left, 2/F & 3/F. 

 


