139 research outputs found

    Beneficial role of allicin from garlic in cervical cancer

    Get PDF
    Introduction: Cervical cancer remains a global health concern for females. Thus, in order to control cervical cancer, attempts are being made by researchers globally to somehow induce programmed cell death in the said cancerous cells. Wide spectrums of molecules are being probed for its ability to induce apoptosis in cervical cancer cells. Focus has now shifted in exploring natural compounds having antioxidant and anti-inflammatory molecules that may induce apoptosis in cancerous cells. Thus, we have employed allicin from garlic- a natural antioxidant, to probe the above in the present study.
Objective: To probe whether or not allicin from garlic, a natural antioxidant, induces apoptosis in monocytes from patients with cervical cancer.
Results: Allicin (500 ng/ml) reduced cell viability to 27% after 24 hours of treatment. Moreover, allicin-induced apoptosis was ascertained by measuring the activity of caspase-3, caspase-8 and caspase-9-like proteases in allicin treated and untreated monocytes from cervical cancer patients. Monocyte co-cultured with allicin for 24 hrs exhibited higher activity of caspase-3 followed by caspase-8 and caspase-9 like proteases, thereby indicating that the activation of caspase-3 like proteases was associated with reduced cell survival and apoptotic death of allicin-treated cervical cancer monocytes. This was ascertained by pre-treatment of cancer cells with cell permeable inhibitor Z-VAD-FMK (caspase-3 inhibitor), Z-IETD-FMK (caspase-8 inhibitor) and Z-LEHD-FMK (caspase-9 inhibitor) followed by allicin for 24 hrs (p<0.001). In this case, the cell viability assay showed that the presence of Z-VAD-FMK inhibitor blocked the effect of allicin on the viability of cancer monocytes (p<0.001).
Conclusion: Allicin from garlic may act as an adjunct in the chemotherapy of cervical cancer.
&#xa

    In Vitro Evaluation of Antioxidant, Anticancer, and Anti-Inflammatory Activities of Ethanolic Leaf Extract of Adenium obesum

    Get PDF
    Adenium obesum commonly known as “desert rose” belongs to the family Apopcynaceae and has previously been reported for its anti-influenza, antimicrobial, and cytotoxic efficacies and well-known for their ethno-medicinal applications. In the present study, ethanolic extracts of A. obesum (AOE) were analyzed by gas chromatography-mass spectrometry (GC–MS) to identify the important phytochemical compounds. The GC–MS analysis of AOE detected the presence of 26 phytochemical compounds. This plant is traditionally used for the treatment of various diseases. In this report, the antioxidant, anti-inflammatory, and anticancer activities of ethanolic leaf extract from A. obesum (AOE) were studied. The antioxidant potential of ethanolic extract of AOE was examined by different antioxidant assays, such as antioxidant capacity by the DPPH, ABTS, superoxide, hydroxyl radical scavenging, and lipid peroxidation inhibition assays. The antioxidant activities of various reaction mixtures of AOE were compared with a reference or standard antioxidant (ascorbic acid). In addition, we also evaluated the anticancer activity of AOE, and it was observed that AOE was found to be cytotoxic against A549 lung cancer cells. It was found that AOE inhibited the viability of A549 lung cancer cells by inducing nuclear condensation and fragmentation. Furthermore, ethanolic AOE demonstrated the anti-inflammatory potential of AOE in murine alveolar macrophages (J774A.1) as an in vitro model system. AOE showed its potential in reducing the levels of inflammatory mediators including the proinflammatory cytokines and TNF-α. The results obtained in the present investigation established the antioxidant, anticancer, and anti-inflammatory potency of AOE, which may account for subsequent studies in the formulation of herbal-based medicine

    Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard-aphid-beetle food chain.

    Get PDF
    The present study investigates the extent of biotransfer and bioaccumulation of cadmium (Cd), lead (Pb) and zinc (Zn) from fly ash amended soil in mustard (Brassica juncea)-aphid (Lipaphis erysimi)-beetle (Coccinella septempunctata) food chain and its subsequent implications for the beetle. The soil was amended with fly ash at the rates of 0, 5, 10, 20 and 40% (w/w). Our results showed that the uptake of Cd, Pb and Zn from soil to mustard root increased with the increase in fly ash application rates, but their root to shoot translocation was relatively restricted. Increase in chlorophyll content and dry mass of mustard plant on treatments ≥20% even at elevated accumulation of Cd (1.67mgkg(-1)), Pb (18.25mgkg(-1)) and Zn (74.45mgkg(-1) dry weight) in its shoot showed relatively higher tolerance of selected mustard cultivar to heavy metal stress. The transfer coefficient (TC(1)) of Cd from mustard shoot to aphid was always >1, indicating that Cd biomagnified in aphids at second trophic level. But, there was no biomagnification of Cd in adult beetles at third trophic level. Zinc accumulation was 2.06 to 2.40 times more in aphids than their corresponding host shoots and 1.26-1.35 times more in adult beetles than their prey (aphids) on which they fed. Lead was only metal whose TC was 0.05) biomass and predation rate of predatory beetles indicated that all levels of soil amendments with fly ash did not have any lethal or sub-lethal effects on beetles

    Combined application of zinc and silicon alleviates terminal drought stress in wheat by triggering morpho-physiological and antioxidants defense mechanisms

    Get PDF
    Wheat is an important global staple food crop; however, its productivity is severely hampered by changing climate. Erratic rain patterns cause terminal drought stress, which affect reproductive development and crop yield. This study investigates the potential and zinc (Zn) and silicon (Si) to ameliorate terminal drought stress in wheat and associated mechanisms. Two different drought stress levels, i.e., control [80% water holding capacity (WHC) was maintained] and terminal drought stress (40% WHC maintained from BBCH growth stage 49 to 83) combined with five foliar-applied Zn-Si combinations (i.e., control, water spray, 4 mM Zn, 40 mM Si, 4 mM Zn + 40 mM Si applied 7 days after the initiation of drought stress). Results revealed that application of Zn and Si improved chlorophyll and relative water contents under well-watered conditions and terminal drought stress. Foliar application of Si and Zn had significant effect on antioxidant defense mechanism, proline and soluble protein, which showed that application of Si and Zn ameliorated the effects of terminal drought stress mainly by regulating antioxidant defense mechanism, and production of proline and soluble proteins. Combined application of Zn and Si resulted in the highest improvement in growth and antioxidant defense. The application of Zn and Si improved yield and related traits, both under well-watered conditions and terminal drought stress. The highest yield and related traits were recorded for combined application of Zn and Si. For grain and biological yield differences among sole and combined Zn-Si application were statistically non-significant (p>0.05). In conclusion, combined application of Zn-Si ameliorated the adverse effects of terminal drought stress by improving yield through regulating antioxidant mechanism and production of proline and soluble proteins. Results provide valuable insights for further cross talk between Zn-Si regulatory pathways to enhance grain biofortification

    Natural product-inspired synthesis of coumarin–chalcone hybrids as potential anti-breast cancer agents

    Get PDF
    Twelve novel neo-tanshinlactone–chalcone hybrid molecules were constructed through a versatile methodology involving the Horner–Wadsworth–Emmons (HWE) olefination of 4-formyl-2H-benzo [h]chromen-2-ones and phosphonic acid diethyl esters, as the key step, and evaluated for anticancer activity against a series of four breast cancers and their related cell lines, viz. MCF-7 (ER + ve), MDA-MB-231 (ER-ve), HeLa (cervical cancer), and Ishikawa (endometrial cancer). The title compounds showed excellent to moderate in vitro anti-cancer activity in a range of 6.8–19.2 µM (IC50). Compounds 30 (IC50 = 6.8 µM and MCF-7; IC50 = 8.5 µM and MDA-MB-231) and 31 (IC50 = 14.4 µM and MCF-7; IC50 = 15.7 µM and MDA-MB-231) exhibited the best activity with compound 30 showing more potent activity than the standard drug tamoxifen. Compound 30 demonstrated a strong binding affinity with tumor necrosis factor α (TNF-α) in molecular docking studies. This is significant because TNFα is linked to MCF-7 cancer cell lines, and it enhances luminal breast cancer cell proliferation by upregulating aromatase. Additionally, virtual ADMET studies confirmed that hybrid compounds 30 and 31 met Lipinski’s rule; displayed high bioavailability, excellent oral absorption, favorable albumin interactions, and strong penetration capabilities; and improved blood–brain barrier crossing. Based on the aforementioned results, compound 30 has been identified as a potential anti-breast cancer lead molecule

    The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017

    Get PDF
    © 2020 The Author(s). Background Oesophageal cancer is a common and often fatal cancer that has two main histological subtypes: oesophageal squamous cell carcinoma and oesophageal adenocarcinoma. Updated statistics on the incidence and mortality of oesophageal cancer, and on the disability-adjusted life-years (DALYs) caused by the disease, can assist policy makers in allocating resources for prevention, treatment, and care of oesophageal cancer. We report the latest estimates of these statistics for 195 countries and territories between 1990 and 2017, by age, sex, and Socio-demographic Index (SDI), using data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD). Methods We used data from vital registration systems, vital registration-samples, verbal autopsy records, and cancer registries, combined with relevant modelling, to estimate the mortality, incidence, and burden of oesophageal cancer from 1990 to 2017. Mortality-to-incidence ratios (MIRs) were estimated and fed into a Cause of Death Ensemble model (CODEm) including risk factors. MIRs were used for mortality and non-fatal modelling. Estimates of DALYs attributable to the main risk factors of oesophageal cancer available in GBD were also calculated. The proportion of oesophageal squamous cell carcinoma to all oesophageal cancers was extracted by use of publicly available data, and its variation was examined against SDI, the Healthcare Access and Quality (HAQ) Index, and available risk factors in GBD that are specific for oesophageal squamous cell carcinoma (eg, unimproved water source and indoor air pollution) and for oesophageal adenocarcinoma (gastro-oesophageal reflux disease). Findings There were 473 000 (95% uncertainty interval [95% UI] 459 000-485 000) new cases of oesophageal cancer and 436 000 (425 000-448 000) deaths due to oesophageal cancer in 2017. Age-standardised incidence was 5.9 (5.7-6.1) per 100 000 population and age-standardised mortality was 5.5 (5.3-5.6) per 100 000. Oesophageal cancer caused 9.78 million (9.53-10.03) DALYs, with an age-standardised rate of 120 (117-123) per 100 000 population. Between 1990 and 2017, age-standardised incidence decreased by 22.0% (18.6-25.2), mortality decreased by 29.0% (25.8-32.0), and DALYs decreased by 33.4% (30.4-36.1) globally. However, as a result of population growth and ageing, the total number of new cases increased by 52.3% (45.9-58.9), from 310 000 (300 000-322 000) to 473 000 (459 000-485 000); the number of deaths increased by 40.0% (34.1-46.3), from 311 000 (301 000-323 000) to 436 000 (425 000-448 000); and total DALYs increased by 27.4% (22.1-33.1), from 7.68 million (7.42-7.97) to 9.78 million (9.53-10.03). At the national level, China had the highest number of incident cases (235 000 [223 000-246 000]), deaths (213 000 [203 000-223 000]), and DALYs (4.46 million [4.25-4.69]) in 2017. The highest national-level agestandardised incidence rates in 2017 were observed in Malawi (23.0 [19.4-26.5] per 100 000 population) and Mongolia (18.5 [16.4-20.8] per 100 000). In 2017, age-standardised incidence was 2.7 times higher, mortality 2.9 times higher, and DALYs 3.0 times higher in males than in females. In 2017, a substantial proportion of oesophageal cancer DALYs were attributable to known risk factors: tobacco smoking (39.0% [35.5-42.2]), alcohol consumption (33.8% [27.3-39.9]), high BMI (19.5% [6.3-36.0]), a diet low in fruits (19.1% [4.2-34.6]), and use of chewing tobacco (7.5% [5.2-9.6]). Countries with a low SDI and HAQ Index and high levels of indoor air pollution had a higher proportion of oesophageal squamous cell carcinoma to all oesophageal cancer cases than did countries with a high SDI and HAQ Index and with low levels of indoor air pollution. Interpretation Despite reductions in age-standardised incidence and mortality rates, oesophageal cancer remains a major cause of cancer mortality and burden across the world. Oesophageal cancer is a highly fatal disease, requiring increased primary prevention efforts and, possibly, screening in some high-risk areas. Substantial variation exists in age-standardised incidence rates across regions and countries, for reasons that are unclear

    Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2.5 air pollution, 1990-2019 : an analysis of data from the Global Burden of Disease Study 2019

    Get PDF
    Background Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2.5 originating from ambient and household air pollution.Methods We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2.5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure-response curve from the extracted relative risk estimates using the MR-BRT (meta-regression-Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2.5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2.5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals.Findings In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2.5 exposure, with an estimated 3.78 (95% uncertainty interval 2.68-4.83) deaths per 100 000 population and 167 (117-223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13.4% (9.49-17.5) of deaths and 13.6% (9.73-17.9) of DALYs due to type 2 diabetes were contributed by ambient PM2.5, and 6.50% (4.22-9.53) of deaths and 5.92% (3.81-8.64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2.5.Interpretation Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2.5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2.5 air pollution, 1990-2019 : An analysis of data from the Global Burden of Disease Study 2019

    Get PDF
    Background Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2·5 originating from ambient and household air pollution. Methods We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2·5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure–response curve from the extracted relative risk estimates using the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2·5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2·5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals. Findings In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2·5 exposure, with an estimated 3·78 (95% uncertainty interval 2·68–4·83) deaths per 100 000 population and 167 (117–223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13·4% (9·49–17·5) of deaths and 13·6% (9·73–17·9) of DALYs due to type 2 diabetes were contributed by ambient PM2·5, and 6·50% (4·22–9·53) of deaths and 5·92% (3·81–8·64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2·5. Interpretation Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2·5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes

    Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the global burden of disease study 2017

    Get PDF
    © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Background: Previous attempts to characterise the burden of chronic respiratory diseases have focused only on specific disease conditions, such as chronic obstructive pulmonary disease (COPD) or asthma. In this study, we aimed to characterise the burden of chronic respiratory diseases globally, providing a comprehensive and up-to-date analysis on geographical and time trends from 1990 to 2017. Methods: Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, we estimated the prevalence, morbidity, and mortality attributable to chronic respiratory diseases through an analysis of deaths, disability-adjusted life-years (DALYs), and years of life lost (YLL) by GBD super-region, from 1990 to 2017, stratified by age and sex. Specific diseases analysed included asthma, COPD, interstitial lung disease and pulmonary sarcoidosis, pneumoconiosis, and other chronic respiratory diseases. We also assessed the contribution of risk factors (smoking, second-hand smoke, ambient particulate matter and ozone pollution, household air pollution from solid fuels, and occupational risks) to chronic respiratory disease-attributable DALYs. Findings: In 2017, 544·9 million people (95% uncertainty interval [UI] 506·9–584·8) worldwide had a chronic respiratory disease, representing an increase of 39·8% compared with 1990. Chronic respiratory disease prevalence showed wide variability across GBD super-regions, with the highest prevalence among both males and females in high-income regions, and the lowest prevalence in sub-Saharan Africa and south Asia. The age-sex-specific prevalence of each chronic respiratory disease in 2017 was also highly variable geographically. Chronic respiratory diseases were the third leading cause of death in 2017 (7·0% [95% UI 6·8–7·2] of all deaths), behind cardiovascular diseases and neoplasms. Deaths due to chronic respiratory diseases numbered 3 914 196 (95% UI 3 790 578–4 044 819) in 2017, an increase of 18·0% since 1990, while total DALYs increased by 13·3%. However, when accounting for ageing and population growth, declines were observed in age-standardised prevalence (14·3% decrease), age-standardised death rates (42·6%), and age-standardised DALY rates (38·2%). In males and females, most chronic respiratory disease-attributable deaths and DALYs were due to COPD. In regional analyses, mortality rates from chronic respiratory diseases were greatest in south Asia and lowest in sub-Saharan Africa, also across both sexes. Notably, although absolute prevalence was lower in south Asia than in most other super-regions, YLLs due to chronic respiratory diseases across the subcontinent were the highest in the world. Death rates due to interstitial lung disease and pulmonary sarcoidosis were greater than those due to pneumoconiosis in all super-regions. Smoking was the leading risk factor for chronic respiratory disease-related disability across all regions for men. Among women, household air pollution from solid fuels was the predominant risk factor for chronic respiratory diseases in south Asia and sub-Saharan Africa, while ambient particulate matter represented the leading risk factor in southeast Asia, east Asia, and Oceania, and in the Middle East and north Africa super-region. Interpretation: Our study shows that chronic respiratory diseases remain a leading cause of death and disability worldwide, with growth in absolute numbers but sharp declines in several age-standardised estimators since 1990. Premature mortality from chronic respiratory diseases seems to be highest in regions with less-resourced health systems on a per-capita basis. Funding: Bill & Melinda Gates Foundation

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations
    corecore