273 research outputs found

    Quad Performances and Manoeuvrability of TWQH platform

    Get PDF
    Accurate dynamic modelling of the Tandem Wing Quadcopter Hybrid (TWQH) platform is becoming increasingly important, as strict requirements are progressively being imposed on the UAV (unmanned aerial vehicles) control system in the transition phase from vertical to level flight and vice versa. This work aims to present preliminary design performances in the steady and manoeuvring flight of the platform thrusted by only four rotors directed upward. The aerodynamic effects of tandem wings make a significant contribution to the evaluation of performance, controllability and manoeuvrability in hovering and low speed phase. More specifically, steady, level, symmetrical pull-up and coordinated turns approaches of the quad model are considered and the results obtained in the simulation study are presented and discussed

    Quality - a Factor for Competitiveness Improvement for Small and Medium Enterprises

    Get PDF
    The impact of quality management on microeconomic systems is major. Theintegration into the European Economic Area requires a comprehensive processof compliance to European policies and practices, including implementation ofquality management system. The dominance of the small and mediumenterprises sector in the economy requires a specific action framework, thequality having a fundamental role. Only those operators who have implementedand certified a quality management system can valorize on their goods andservices in the European market. Acting on the potentials` sphere, qualitybecomes a crucial resource for economic success. In this context, the authorsaim to analyze the impact of implementation and certification of qualitymanagement on the progress of Romania small and medium enterprises in thecontext of diversification and globalization of the emphasis of European andworld markets

    Oscillatory behavior of hollow grid cathode discharges

    Get PDF
    Multiple complex space-charge structures in unmagnetized low-temperature plasmas arise from ionization phenomena near additional negatively or positively biased electrodes or due to local constraints. Because of their usually spherical form, such structures are called fireballs. If they appear inside hollow grids, they are called inverted fireballs or plasma bubbles. The temporal evolution of such structures is often accompanied by strong plasma instabilities. The dynamics of complex space-charge structures have been investigated by using single spherical grid cathode with an orifice. Langmuir probe and optical emission spectroscopy were used to diagnose the structures. Measurements delivered the axial profiles of the plasma potential, electron temperature and density, and the densities of excited atoms and ions, that confirmed the formation of a fireball in the region near the orifice (also evidenced by visual observation). Inside the grid, a plasma bubble has developed, with a high ion density inside due to the hollow cathode effect. Information on the nonlinear dynamics of the complex space charge structures was obtained from the analysis of the oscillations of the discharge current

    Unchaining Collective Intelligence for Science, Research and Technology Development by Blockchain-Boosted Community Participation

    Get PDF
    Since its launch just over a decade ago by the cryptocurrency Bitcoin, the distributed ledger technology (DLT) blockchain has followed a breathtaking trajectory into manifold application spaces. This paper analyses how key factors underpinning the success of this ground-breaking “internet of value” technology, such as staking of collateral (“skin in the game”), competitive crowdsourcing, crowdfunding, and prediction markets, can be applied to substantially innovate the legacy organization of science, research and technology development (RTD). Here, we elaborate a highly integrative, community-based strategy where a token-based crypto-economy supports finding best possible consensus, trust and truth through adding unconventional elements known from reputation systems, betting, secondary markets and social networking. These tokens support the holder’s formalized reputation, and are used in liquid-democracy style governance and arbitration within projects or community-driven initiatives. This participatory research model serves as a solid basis for comprehensively leveraging collective intelligence by effectively incentivizing contributions from the crowd, such as intellectual property (IP), work, validation, assessment, infrastructure, education, assessment, governance, publication, and promotion of projects. On the analogy of its current blockbusters like peer-to-peer structured decentralized finance (“DeFi”), blockchain technology can seminally enhance the efficiency of science and RTD initiatives, even permitting to fully stage operations as a chiefless Decentralised Autonomous Organization (DAOs)

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    Full text link
    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87

    K0S and Λ production in Pb-Pb collisions at sNN−−−−√=2.76  TeV

    Get PDF
    The ALICE measurement of K0S and Λ production at midrapidity in Pb-Pb collisions at sNN−−−√=2.76  TeV is presented. The transverse momentum (pT) spectra are shown for several collision centrality intervals and in the pT range from 0.4  GeV/c (0.6  GeV/c for Λ) to 12  GeV/c. The pT dependence of the Λ/K0S ratios exhibits maxima in the vicinity of 3  GeV/c, and the positions of the maxima shift towards higher pT with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate pT is not observed in pp interactions at s√=0.9  TeV and at s√=7  TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured pT spectra above 2  GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of pT, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the pT dependence of the Λ/K0S ratio

    Performance of the ALICE experiment at the CERN LHC

    Get PDF
    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables

    One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    The size of the particle emission region in high-energy collisions can be deduced using the femtoscopic correlations of particle pairs at low relative momentum. Such correlations arise due to quantum statistics and Coulomb and strong final state interactions. In this paper, results are presented from femtoscopic analyses of pi(+/-) pi(+/-), K-+/- K-+/-, K-S(0) K-S(0), pp, and (pp) over bar correlations from Pb-Pb collisions at root s(NN) = 2.76 TeV by the ALICE experiment at the LHC. One-dimensional radii of the system are extracted from correlation functions in terms of the invariant momentum difference of the pair. The comparison of the measured radii with the predictions from a hydrokinetic model is discussed. The pion and kaon source radii display a monotonic decrease with increasing average pair transverse mass m(T) which is consistent with hydrodynamic model predictions for central collisions. The kaon and proton source sizes can be reasonably described by approximate m(T) scaling.Peer reviewe
    corecore