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Abstract—Multiple complex space-charge structures in un-
magnetized low-temperature plasmas arise from ionization
phenomena near additional negatively or positively biased elec-
trodes or due to local constraints. Because of their usually
spherical form, such structures are called fireballs. If they ap-
pear inside hollow grids, they are called inverted fireballs or
plasma bubbles. The temporal evolution of such structures is
often accompanied by strong plasma instabilities. The dynam-
ics of complex space-charge structures have been investigated
by using single spherical grid cathode with an orifice. Lang-
muir probe and optical emission spectroscopy were used to di-
agnose the structures. Measurements delivered the axial pro-
files of the plasma potential, electron temperature and density,
and the densities of excited atoms and ions, that confirmed the
formation of a fireball in the region near the orifice (also evi-
denced by visual observation). Inside the grid, a plasma bubble
has developed, with a high ion density inside due to the hollow
cathode effect. Information on the nonlinear dynamics of the
complex space charge structures was obtained from the analy-
sis of the oscillations of the discharge current.

Keywords—fireball, plasma bubble, hollow cathode, oscilla-
tions

I. INTRODUCTION

Plasmas are complex systems very suitable for the study
of non-equilibrium phenomena. At the equilibrium, a plasma
system reacts to external constraints, shielding any outer in-
fluence. However, when the external constraint exceeds a
certain critical value, plasma adapts itself, displaying strong
nonlinear spatial and/or temporal behaviors. One of the con-
sequences is the appearance of complex space-charge struc-
tures near negatively or positively biased electrodes, known

978-1-7281-0563-5/19/$31.00 ©2019 IEEE

as fireballs [1,2], inverted fireballs [3,4], plasma bubbles [5-
8] or multiple double layers [9-11]. These structures are
bounded by plasma double layers, whose stability is ensured
by the balance between the production of charged particles
(electrons and ions) through excitation and ionization elec-
tron-neutral collisions and charged particle loss through re-
combination and diffusion. When the external constraint
pushes the plasma system far away from equilibrium, this
balance cannot be maintained and the structures pass into
dynamic states, consisting of periodic disruptions and recrea-
tions of the double layers at their borders. During the disrup-
tions, bunches of charged particles are periodically released
into the plasma, triggering low-frequency plasma instabilities
that manifest as strong oscillations of the plasma parameters
(e.g. plasma potential, ion and electron densities, discharge
current). Under certain experimental conditions, these insta-
bilities can lead to chaotic states of the plasma system
through different scenarios [11,12].

In recent years, great attention has been paid to the inves-
tigation of the dynamics of such individual complex space-
charge structures on various geometrical electrode configura-
tions [13-20]. Thus, here we report on the investigation of
the oscillatory behavior of a discharge with a spherical grid
cathode with an orifice, a geometry that is used in applica-
tions like a DC-electron bombardment ion thruster [21]. For
this, we recorded and analyzed the oscillations of the dis-
charge current. First, a diagnosis of the complex space-
charge structure was performed by using Langmuir probes
and optical emission spectroscopy, in order to understand the
phenomenology.
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Fig. 1. Photo of the experimental arrangement for measuring the radial pro-
files of the plasma parameters.

II. RESULTS AND DISCUSSIONS

The experiments have been performed in a plasma diode
with grounded metallic walls acting as anode. The cathode is
a spherical metallic grid with a diameter of 68 mm, the di-
ameter of the wires being 0.1 mm, while the mesh width is 2
mm. A small orifice with a diameter of 6 mm was made in
this cathode. A cylindrical Langmuir probe with 1 mm length
and 0.125 mm diameter was used for diagnosis of the plasma
near the cathode, movable in the axial direction through the
orifice (see photo of the experimental arrangement in Fig. 1).
Spectral measurements were performed by focusing the light
coming from a small volume of plasma (I mm’) along the
axis through the orifice onto the end of an optical fiber con-
nected to a spectrophotometer. Argon was used as the work-
ing gas at the pressure p = 5x10~ mbar. The applied dis-
charge voltage was kept at V; = 400 V during the electrical
and spectral diagnosis.

Fig. 2 shows the axial profiles of plasma potential, elec-
tron temperature and density, and ion density. These were
obtained by analyzing the probe characteristics recorded at
every 2 mm on the axis, through the orifice. The existence of
a double layer near the orifice can be observed in the axial
profile of the plasma potential, with the potential drop close
to the ionization potential of the used gas. This confirms the
presence of a fireball in that region, which is also visually
observed. The axial profile of the electron temperature pre-
sents a maximum inside the grid, at approximately 7 mm
from the orifice. The axial profiles of both electron and ion
densities present a maximum outside the grid, near the ori-
fice, due to the ionization collisions between the electrons
accelerated by the double layer and the neutrals.

Spectral measurements have evidenced the existence of a
strong population of ions inside the grid cathode, which is
due to the hollow cathode effect (see Fig. 3). For comparison
Fig. 4 shows the spectra recorded at 3 mm from the orifice,
inside and outside the grid cathode, respectively, revealing a
strong increase of populations of both ions and excited atoms
outside the grid. The data confirm the acceleration of the
electrons in the double layer’s potential drop to the energies
high enough to produce excitation and ionization collisions
with the neutrals in the region outside the grid cathode, near
the orifice.
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Fig. 2. Axial profiles of the plasma potential V,, electron temperature T
and density ne, and ion density n;, estimated from Langmuir probe measure-
ments.
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Fig. 3. Optical spectrum recorded from the center of the grid cathode.
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Fig. 4. Optical spectra recorded from the regions localized at 3 mm from
the orifice, inside and outside the grid cathode, respectively.

Time series of the discharge current were measured for
different values of the discharge voltage V; by means of a
digital oscilloscope with a sampling rate of 2.5 GS/s. They
have revealed strongly nonlinear dynamics of the complex
space-charge structures inside and around the grid cathode.
Fig. 5 shows the evolution of the oscillatory state of the
plasma system for increasing discharge voltage for an argon
pressure of p = 7.5x10 mbar. The time series of the dis-
charge current oscillations are shown in the left column, their
Fast Fourier Transforms (FFT) in the central column and the
reconstructed attractors of the plasma system's dynamics by
the time delay method in the right column, respectively. This
method is extensively described in [22].
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Fig. 5. Time series of the oscillation of the discharge current (left column), their FFTs (central column) and the reconstructed attractors of the plasma
system dynamics by time delay method (right column), respectively, for different values of the applied discharge voltage (266 V, 270 V, 271 V, 275 V, 277

V and 280 V, respectively).
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As it turns out, for V; = 266 V the first space-charge
structure that appears is the plasma bubble inside the grid
cathode, due to the high rate of ionization processes in this
region resulting from the hollow cathode effect. This struc-
ture is in a dynamic state, oscillating with a frequency of fp
= 315 kHz (see Figs. 5a-c). By increasing the discharge volt-
age, for ¥, = 270 V a double-period bifurcation appears in
the plasma bubble dynamics, identified by the appearance of
the first sub-harmonic (f3/2) in the FFT spectrum (Fig. Se)
of the discharge current oscillations (Fig. 5d), as well as by
the splitting of the limit cycle (Fig. 5f), characteristic for os-
cillatory states of a dynamical system. At V, =271V, a tran-
sient phase starts (see Figs. 5g-i) simultancous with the de-
velopment of the space-charge structures outside the grid
cathode, including the fireball in the region of the orifice.
The transient phase ends at V; = 275 V, with complex dy-
namics involving oscillations modulated both in amplitude
and frequency (Figs. 5j-1). Sidebands around fzz and fzp/2
peaks can be observed, with the frequencies fzz + frp and
f88/2 £ frp, respectively (see Fig. 5k), where fr is the fre-
quency of the fireball dynamics. This is a common phenom-
enon in plasma, when two coupled oscillatory processes with
comparable amplitudes exist [22]. In our case, the dynamics
of the plasma bubble and fireball are coupled through the
discharge current, the frequencies of both phenomena de-
pending on its value [5,23]. Starting from V, = 277 V, the
level of noise in the system increases, leading to a weakening
of'the correlation between the two dynamics (see Figs. Sm-0)
and the development of an intermittent route to chaos (see
Figs. 5p-1).

III. CONCLUSION

Complex space-charge structures were obtained inside
and around a hollow grid cathode with an orifice, in a low-
temperature discharge plasma. Langmuir probe and spectral
diagnosis revealed the presence of a plasma bubble inside the
hollow grid cathode and a fireball near the orifice. The anal-
ysis of the time series of the discharge current oscillations,
recorded for several increasing values of the applied dis-
charge voltage, highlighted a strong interaction between the
dynamics of the two structures, the fireball dynamics modu-
lating in both amplitude and frequency the plasma bubble
dynamics. For high values of the discharge voltage, the in-
crease of the noise level in the plasma system leads to the
development of an intermittent route to chaos.
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