92 research outputs found

    Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    Get PDF
    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP) measurements at high temporal resolution and at a relatively large scale at a heath tundra site on Disko Island on the west coast of Greenland (69 degrees N). At the field site, the active layer is disconnected from the deeper permafrost, due to isothermal springs in the region. Borehole sediment characteristics and subsurface temperatures supplemented the DC-IF measurements. A time-lapse DC-IP monitoring system has been acquiring at least six datasets per day on a 42-electrode profile with 0.5 m electrode spacing since July 2013. Remote control of the data acquisition system enables interactive adaptation of the measurement schedule, which is critically important to acquire data in the winter months, where extremely high contact resistances increase the demands on the resistivity meter. Data acquired during the freezing period of October 2013 to February 2014 clearly image the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing temperature. Time-lapse inversions of the full-decay IF data indicate a decrease of normalized chargeability with freezing of the ground, which is the result of a decrease in the total unfrozen water and of the higher ion concentration in the pore-water. We conclude that DC-IP time-lapse measurements can non-intrusively and reliably image freezing patterns and their lateral variation on a 10-100 m scale that is difficult to sample by point measurements. In combination with laboratory experiments, the different patterns in resistivity and chargeability changes will enable the disentanglement of processes (e.g., fluid migration and freezing, advective and diffusive heat transport) occurring during freezing of the ground. The technology can be expanded to three dimensions and also to larger scale

    Consequences of permafrost degradation for Arctic infrastructure - Bridging the model gap between regional and engineering scales

    Get PDF
    Infrastructure built on perennially frozen ice-rich ground relies heavily on thermally stable subsurface conditions. Climate-warming-induced deepening of ground thaw puts such infrastructure at risk of failure. For better assessing the risk of large-scale future damage to Arctic infrastructure, improved strategies for model-based approaches are urgently needed. We used the laterally coupled 1D heat conduction model CryoGrid3 to simulate permafrost degradation affected by linear infrastructure. We present a case study of a gravel road built on continuous permafrost (Dalton highway, Alaska) and forced our model under historical and strong future warming conditions (following the RCP8.5 scenario). As expected, the presence of a gravel road in the model leads to higher net heat flux entering the ground compared to a reference run without infrastructure and thus a higher rate of thaw. Further, our results suggest that road failure is likely a consequence of lateral destabilisation due to talik formation in the ground beside the road rather than a direct consequence of a top-down thawing and deepening of the active layer below the road centre. In line with previous studies, we identify enhanced snow accumulation and ponding (both a consequence of infrastructure presence) as key factors for increased soil temperatures and road degradation. Using differing horizontal model resolutions we show that it is possible to capture these key factors and their impact on thawing dynamics with a low number of lateral model units, underlining the potential of our model approach for use in pan-Arctic risk assessments. Our results suggest a general two-phase behaviour of permafrost degradation: an initial phase of slow and gradual thaw, followed by a strong increase in thawing rates after the exceedance of a critical ground warming. The timing of this transition and the magnitude of thaw rate acceleration differ strongly between undisturbed tundra and infrastructure-affected permafrost ground. Our model results suggest that current model-based approaches which do not explicitly take into account infrastructure in their designs are likely to strongly underestimate the timing of future Arctic infrastructure failure. By using a laterally coupled 1D model to simulate linear infrastructure, we infer results in line with outcomes from more complex 2D and 3D models, but our model's computational efficiency allows us to account for long-term climate change impacts on infrastructure from permafrost degradation. Our model simulations underline that it is crucial to consider climate warming when planning and constructing infrastructure on permafrost as a transition from a stable to a highly unstable state can well occur within the service lifetime (about 30 years) of such a construction. Such a transition can even be triggered in the coming decade by climate change for infrastructure built on high northern latitude continuous permafrost that displays cold and relatively stable conditions today.publishedVersio

    Are you IDDSI ready?

    Get PDF
    The International Dysphagia Diet Standardisation Initiative (IDDSI) global framework was launched in November 2015. It was subsequently adopted by the Royal College of Speech and Language Therapists and the British Dietetic Association following expert review and professional membership consultation. In the UK, NHS England established an External IDDSI Reference Group comprising of stakeholders including professional, catering, industry and manufacturing representatives. The IDDSI External reference Group have endorsed a UK Aware, Prepare, Adopt model of implementation and all manufacturers and all healthcare settings are anticipated to be fully IDDSI compliant by April 2019. This requires whole system change with a comprehensive training programme. Those providing and delivering food and drink to individuals with swallowing difficulties need to familiarise themselves with food and drink consistencies and their testing methods. Resources are available to assist local healthcare institutions with implementation of the framework at www.rcslt.org / www.bda.org / www.iddsi.org

    Craniectomy for Malignant Cerebral Infarction: Prevalence and Outcomes in US Hospitals

    Get PDF
    Randomized trials have demonstrated the efficacy of craniectomy for the treatment of malignant cerebral edema following ischemic stroke. We sought to determine the prevalence and outcomes related to this by using a national database.Patient discharges with ischemic stroke as the primary diagnosis undergoing craniectomy were queried from the US Nationwide Inpatient Sample from 1999 to 2008. A subpopulation of patients was identified that underwent thrombolysis. Two primary end points were examined: in-hospital mortality and discharge to home/routine care. To facilitate interpretations, adjusted prevalence was calculated from the overall prevalence and two age-specific logistic regression models. The predictive margin was then generated using a multivariate logistic regression model to estimate the probability of in-hospital mortality after adjustment for admission type, admission source, length of stay, total hospital charges, chronic comorbidities, and medical complications.After excluding 71,996 patients with the diagnosis of intracranial hemorrhage and posterior intracranial circulation occlusion, we identified 4,248,955 adult hospitalizations with ischemic stroke as a primary diagnosis. The estimated rates of hospitalizations in craniectomy per 10,000 hospitalizations with ischemic stroke increased from 3.9 in 1999-2000 to 14.46 in 2007-2008 (p for linear trend<0.001). Patients 60+ years of age had in-hospital mortality of 44% while the 18-59 year old group was found to be 24% (p = 0.14). Outcomes were comparable if recombinant tissue plasminogen activator had been administered.Craniectomy is being increasingly performed for malignant cerebral edema following large territory cerebral ischemia. We suspect that the increase in the annual incidence of DC for malignant cerebral edema is directly related to the expanding collection of evidence in randomized trials that the operation is efficacious when performed in the correct patient population. In hospital mortality is high for all patients undergoing this procedure

    The Arctic in the twenty-first century: changing biogeochemical linkages across a paraglacial landscape of Greenland

    Get PDF
    The Kangerlussuaq area of southwest Greenland encompasses diverse ecological, geomorphic, and climate gradients that function over a range of spatial and temporal scales. Ecosystems range from the microbial communities on the ice sheet and moisture-stressed terrestrial vegetation (and their associated herbivores) to freshwater and oligosaline lakes. These ecosystems are linked by a dynamic glacio-fluvial-aeolian geomorphic system that transports water, geological material, organic carbon and nutrients from the glacier surface to adjacent terrestrial and aquatic systems. This paraglacial system is now subject to substantial change because of rapid regional warming since 2000. Here, we describe changes in the eco- and geomorphic systems at a range of timescales and explore rapid future change in the links that integrate these systems. We highlight the importance of cross-system subsidies at the landscape scale and, importantly, how these might change in the near future as the Arctic is expected to continue to warm

    Permafrost is warming at a global scale

    Get PDF
    Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007-2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged
    corecore