2,053 research outputs found

    Hypothalamic Proopiomelanocortin Neurons Are Glucose Responsive and Express KATP Channels

    Get PDF
    Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in the mammal. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced green fluorescent protein to perform visualized, whole-cell patch recordings from prepubertal female hypothalamic slices. The mouse POMC-enhanced green fluorescent protein neurons expressed the same endogenous conductances (a transient outward K current and a hyperpolarization-activated, cation current) that have been described for guinea pig POMC neurons. In addition, the selective -opioid receptor agonist DAMGO induced an outward current (maximum of 12.8 1.2 pA), which reversed at K equilibrium potential (EK), in the majority (85%) of POMC neurons with an EC50 of 102 nM. This response was blocked by the opioid receptor antagonist naloxone with an inhibition constant of 3.1 nM. In addition, the -aminobutyric acidB receptor agonist baclofen (40 M) caused an outward current (21.6 4.0 pA) that reversed at EK in these same neurons. The ATP-sensitive potassium channel opener diazoxide also induced an outward K current (maximum of 18.7 2.2 pA) in the majority (92%) of POMC neurons with an EC50 of 61 M. The response to diazoxide was blocked by the sulfonylurea tolbutamide, indicating that the POMC neurons express both Kir6.2 and sulfonylurea receptor 1 channel subunits, which was verified using single cell RT-PCR. This pharmacological and molecular profile suggested that POMC neurons might be sensitive to metabolic inhibition, and indeed, we found that their firing rate varied with changes in glucose concentrations. Therefore, it appears that POMC neurons may function as an integrator of metabolic cues and synaptic input for controlling homeostasis in the mammal

    A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines: Phase II Final Report for the Radioisotope Power Conversion Technology NRA Contract NAS3-03124

    Get PDF
    An actual-size microfabricated regenerator comprised of a stack of 42 disks, 19 mm diameter and 0.25 mm thick, with layers of microscopic, segmented, involute-shaped flow channels was fabricated and tested. The geometry resembles layers of uniformly-spaced segmented-parallel-plates, except the plates are curved. Each disk was made from electro-plated nickel using the LiGA process. This regenerator had feature sizes close to those required for an actual Stirling engine but the overall regenerator dimensions were sized for the NASA/Sunpower oscillating-flow regenerator test rig. Testing in the oscillating-flow test rig showed the regenerator performed extremely well, significantly better than currently used random-fiber material, producing the highest figures of merit ever recorded for any regenerator tested in that rig over its ~20 years of use

    Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    Get PDF
    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach

    A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines

    Get PDF
    An actual-size microfabricated regenerator comprised of a stack of 42 disks, 19 mm diameter and 0.25 mm thick, with layers of microscopic, segmented, involute-shaped flow channels was fabricated and tested. The geometry resembles layers of uniformly-spaced segmented-parallel-plates, except the plates are curved. Each disk was made from electro-plated nickel using the LiGA process. This regenerator had feature sizes close to those required for an actual Stirling engine but the overall regenerator dimensions were sized for the NASA/Sunpower oscillating-flow regenerator test rig. Testing in the oscillating-flow test rig showed the regenerator performed extremely well, significantly better than currently used random-fiber material, producing the highest figures of merit ever recorded for any regenerator tested in that rig over its approximately 20 years of use

    Influence of the isomeric structures of butyl acrylate on its single-electron transfer-degenerative chain transfer living radical polymerization in water Catalyzed by Na2S2O4

    Get PDF
    The aim of this work is to the study the influence of the isomer structures of butyl acrylate monomer on the single-electron transfer/degenerative chain transfer mediated living radical polymerization (SET-DTLRP). The kinetic of isobutyl acrylate is determined for the first time by SET-DTLRP in water catalyzed by sodium dithionite. The plots of number-average molecular weight versus conversion and ln([M]0/[M]) versus time are linear, demonstrating a controlled polymerization. The influence of the isomer t-butyl, i-butyl, and n-butyl on the kinetics, properties, and stereochemistry of the reactions was assessed. To the best of our knowledge, there is no previous report dealing with the synthesis of PiBA by any LRP approach in aqueous medium. The results presented in this work suggest that the stability provided by the acrylate side group has an important influence in the polymerization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6542-6551, 200

    Use of the new World Health Organization child growth standards to describe longitudinal growth of breastfed rural Bangladeshi infants and young children.

    Get PDF
    BACKGROUND: Although the National Center for Health Statistics (NCHS) reference has been widely used, in 2006 the World Health Organization (WHO) released new standards for assessing growth of infants and children worldwide. OBJECTIVE: To assess and compare the growth of breastfed rural Bangladeshi infants and young children based on the new WHO child growth standards and the NCHS reference. METHODS: We followed 1343 children in the Maternal and Infant Nutrition Intervention in Matlab (MINIMat) study from birth to 24 months of age. Weights and lengths of the children were measured monthly during infancy and quarterly in the second year of life. Anthropometric indices were calculated using both WHO standards and the NCHS reference. The growth pattern and estimates of undernutrition based on the WHO standards and the NCHS reference were compared. RESULTS: The mean birthweight was 2697 +/- 401 g, with 30% weighing <2500 g. The growth pattern of the MINIMat children more closely tracked the WHO standards than it did the NCHS reference. The rates of stunting based on the WHO standards were higher than the rates based on the NCHS reference throughout the first 24 months. The rates of underweight and wasting based on the WHO standards were significantly different from those based on the NCHS reference. CONCLUSIONS: This comparison confirms that use of the NCHS reference misidentifies undernutrition and the timing of growth faltering in infants and young children, which was a key rationale for constructing the new WHO standards. The new WHO child growth standards provide a benchmark for assessing the growth of breastfed infants and children

    A Microfabricated Involute-Foil Regenerator for Stirling Engines

    Get PDF
    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM (electric discharge machining). During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90% random fiber currently used in small ~ 100 W Stirling space-power convertors in the Reynolds Number range of interest (50-100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6-9%; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C for a potential engine-cooler for a Venus mission), and (2) reduction of the cost of the fabrication process to make it more suitable for terrestrial applications of segmented involute foils. Past attempts have been made to use wrapped foils to approximate the large theoretical figures of merit projected for parallel plates. Such metal wrapped foils have never proved very successful, apparently due to the difficulties of fabricating wrapped-foils with uniform gaps and maintaining the gaps under the stress of time-varying temperature gradients during start-up and shut-down, and relatively-steady temperature gradients during normal operation. In contrast, stacks of involute-foil disks, with each disk consisting of multiple involute-foil segments held between concentric circular ribs, have relatively robust structures. The oscillating-flow rig tests of the segmented-involute-foil regenerator have demonstrated a shift in regenerator performance strongly in the direction of the theoretical performance of ideal parallel-plate regenerators

    Measurement of the Target-Normal Single-Spin Asymmetry in Quasi-Elastic Scattering from the Reaction 3^3He(e,e)^\uparrow(e,e^\prime)

    Full text link
    We report the first measurement of the target single-spin asymmetry, AyA_y, in quasi-elastic scattering from the inclusive reaction 3^3He(e,e)^{\uparrow}(e,e^\prime) on a 3^3He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A non-zero AyA_y can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the sub-structure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at Q2=Q^{2}= 0.13, 0.46 and 0.97 GeV2^{2}. These measurements demonstrate, for the first time, that the 3^3He asymmetry is clearly non-zero and negative with a statistical significance of (8-10)σ\sigma. Using measured proton-to-3^{3}He cross-section ratios and the effective polarization approximation, neutron asymmetries of -(1-3)% were obtained. The neutron asymmetry at high Q2Q^2 is related to moments of the Generalized Parton Distributions (GPDs). Our measured neutron asymmetry at Q2=0.97Q^2=0.97 GeV2^2 agrees well with a prediction based on two-photon exchange using a GPD model and thus provides a new, independent constraint on these distributions

    Cost-effectiveness of non-invasive methods for assessment and monitoring of liver fibrosis and cirrhosis in patients with chronic liver disease: systematic review and economic evaluation

    Get PDF
    BACKGROUND: Liver biopsy is the reference standard for diagnosing the extent of fibrosis in chronic liver disease; however, it is invasive, with the potential for serious complications. Alternatives to biopsy include non-invasive liver tests (NILTs); however, the cost-effectiveness of these needs to be established. OBJECTIVE: To assess the diagnostic accuracy and cost-effectiveness of NILTs in patients with chronic liver disease. DATA SOURCES: We searched various databases from 1998 to April 2012, recent conference proceedings and reference lists. METHODS: We included studies that assessed the diagnostic accuracy of NILTs using liver biopsy as the reference standard. Diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Meta-analysis was conducted using the bivariate random-effects model with correlation between sensitivity and specificity (whenever possible). Decision models were used to evaluate the cost-effectiveness of the NILTs. Expected costs were estimated using a NHS perspective and health outcomes were measured as quality-adjusted life-years (QALYs). Markov models were developed to estimate long-term costs and QALYs following testing, and antiviral treatment where indicated, for chronic hepatitis B (HBV) and chronic hepatitis C (HCV). NILTs were compared with each other, sequential testing strategies, biopsy and strategies including no testing. For alcoholic liver disease (ALD), we assessed the cost-effectiveness of NILTs in the context of potentially increasing abstinence from alcohol. Owing to a lack of data and treatments specifically for fibrosis in patients with non-alcoholic fatty liver disease (NAFLD), the analysis was limited to an incremental cost per correct diagnosis. An analysis of NILTs to identify patients with cirrhosis for increased monitoring was also conducted. RESULTS: Given a cost-effectiveness threshold of £20,000 per QALY, treating everyone with HCV without prior testing was cost-effective with an incremental cost-effectiveness ratio (ICER) of £9204. This was robust in most sensitivity analyses but sensitive to the extent of treatment benefit for patients with mild fibrosis. For HBV [hepatitis B e antigen (HBeAg)-negative)] this strategy had an ICER of £28,137, which was cost-effective only if the upper bound of the standard UK cost-effectiveness threshold range (£30,000) is acceptable. For HBeAg-positive disease, two NILTs applied sequentially (hyaluronic acid and magnetic resonance elastography) were cost-effective at a £20,000 threshold (ICER: £19,612); however, the results were highly uncertain, with several test strategies having similar expected outcomes and costs. For patients with ALD, liver biopsy was the cost-effective strategy, with an ICER of £822. LIMITATIONS: A substantial number of tests had only one study from which diagnostic accuracy was derived; therefore, there is a high risk of bias. Most NILTs did not have validated cut-offs for diagnosis of specific fibrosis stages. The findings of the ALD model were dependent on assuptions about abstinence rates assumptions and the modelling approach for NAFLD was hindered by the lack of evidence on clinically effective treatments. CONCLUSIONS: Treating everyone without NILTs is cost-effective for patients with HCV, but only for HBeAg-negative if the higher cost-effectiveness threshold is appropriate. For HBeAg-positive, two NILTs applied sequentially were cost-effective but highly uncertain. Further evidence for treatment effectiveness is required for ALD and NAFLD. STUDY REGISTRATION: This study is registered as PROSPERO CRD42011001561. FUNDING: The National Institute for Health Research Health Technology Assessment programme
    corecore