406 research outputs found

    VALES: IV. Exploring the transition of star formation efficiencies between normal and starburst galaxies using APEX/SEPIA Band-5 and ALMA at low redshift

    Full text link
    In this work we present new APEX/SEPIA Band-5 observations targeting the CO (J=2-1J=2\text{-}1) emission line of 24 Herschel-detected galaxies at z=0.10.2z=0.1-0.2. Combining this sample {with} our recent new Valpara\'iso ALMA Line Emission Survey (VALES), we investigate the star formation efficiencies (SFEs = SFR/MH2M_{\rm H_{2}}) of galaxies at low redshift. We find the SFE of our sample bridges the gap between normal star-forming galaxies and Ultra-Luminous Infrared Galaxies (ULIRGs), which are thought to be triggered by different star formation modes. Considering the SFE\rm SFE' as the SFR and the LCOL'_{\rm CO} ratio, our data show a continuous and smooth increment as a function of infrared luminosity (or star formation rate) with a scatter about 0.5 dex, instead of a steep jump with a bimodal behaviour. This result is due to the use of a sample with a much larger range of sSFR/sSFRms_{\rm ms} using LIRGs, with luminosities covering the range between normal and ULIRGs. We conclude that the main parameters controlling the scatter of the SFE in star-forming galaxies are the systematic uncertainty of the αCO\alpha_{\rm CO} conversion factor, the gas fraction and physical size.Comment: 9pages, 7 figures, 1 table, accepted for publication in MNRA

    Infrared-Faint Radio Sources: A Cosmological View - AGN Number Counts, the Cosmic X-Ray Background and SMBH Formation

    Full text link
    Context. Infrared Faint Radio Sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5 sigma sensitivities as low as 1 uJy. Aims. Recent SED-modelling and analysis of their radio properties shows that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3<z<6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods. We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 +- 15.0) per square degree. We computed the IFRS contribution to the total number of AGN in the Universe to account for the Cosmic X-ray Background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results. The number density of AGN derived from the IFRS density was found to be about 310 deg^-2, which is equivalent to a SMBH mass density of the order of 10^3 M_sun Mpc^-3 in the redshift range 3<z<6. This produces an X-ray flux of 9 10^-16 W m^-2 deg^-2 in the 0.5-2.0 keV band and 3 10^-15 W m^-2 deg^-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. Concerning the problem of SMBH formation after the Big Bang we find evidence for a scenario involving both halo gas accretion and major mergers.Comment: 8 pages, 4 figures, accepted for publication in A&

    Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies

    Get PDF
    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen-poor) often (~50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe-II (hydrogen-rich) occur in more massive, more metal-rich galaxies with softer radiation fields. Therefore, if SLSNe-II constitute a uniform class, their progenitor systems are likely different from those of H-poor SLSNe. Gamma-ray bursts (GRBs) are, on average, not found in as extreme environments as H-poor SLSNe. We propose that H-poor SLSNe result from the very first stars exploding in a starburst, even earlier than GRBs. This might indicate a bottom-light initial mass function in these systems. SLSNe present a novel method of selecting candidate EELGs independent of their luminosity.Comment: Published version, matches proofs. Accepted 2015 February 13. 23 pages, 8 figures, 4 tables. Minor changes with respect to previous versio

    Linking the X-ray and infrared properties of star-forming galaxies at z < 1.5

    Get PDF
    We present the most complete study to date of the X-ray emission from star formation in high-redshift (median z = 0.7; z −3 in both hard and soft X-ray bands. From the sources which are star formation dominated, only a small fraction are individually X-ray detected and for the bulk of the sample we calculate average X-ray luminosities through stacking. We find an average soft X-ray to infrared ratio of log ?L SX /L IR ? = −4.3 and an average hard X-ray to infrared ratio of log?L HX /L IR ?=−3.8.WereportthattheX-ray/IRcorrelationisapproximatelylinearthrough the entire range of L IR and z probed and, although broadly consistent with the local (z < 0.1) one, it does display some discrepancies. We suggest that these discrepancies are unlikely to be physical, i.e. due to an intrinsic change in the X-ray properties of star-forming galaxies with cosmic time, as there is no significant evidence for evolution of the L X /L IR ratio with redshift. Instead, they are possibly due to selection effects and remaining AGN contamination. We also examine whether dust obscuration in the galaxy plays a role in attenuating X-rays from star formation, by investigating changes in the L X /L IR ratio as a function of the average dust temperature. We conclude that X-rays do not suffer any measurable attenuation in the host galaxy

    The ALMA Frontier Fields Survey - IV. Lensing-corrected 1.1 mm number counts in Abell 2744, MACSJ0416.1-2403 and MACSJ1149.5+2223

    Get PDF
    [abridged] Characterizing the number counts of faint, dusty star-forming galaxies is currently a challenge even for deep, high-resolution observations in the FIR-to-mm regime. They are predicted to account for approximately half of the total extragalactic background light at those wavelengths. Searching for dusty star-forming galaxies behind massive galaxy clusters benefits from strong lensing, enhancing their measured emission while increasing spatial resolution. Derived number counts depend, however, on mass reconstruction models that properly constrain these clusters. We estimate the 1.1 mm number counts along the line of sight of three galaxy clusters, i.e. Abell 2744, MACSJ0416.1-2403 and MACSJ1149.5+2223, which are part of the ALMA Frontier Fields Survey. We perform detailed simulations to correct these counts for lensing effects. We use several publicly available lensing models for the galaxy clusters to derive the intrinsic flux densities of our sources. We perform Monte Carlo simulations of the number counts for a detailed treatment of the uncertainties in the magnifications and adopted source redshifts. We find an overall agreement among the number counts derived for the different lens models, despite their systematic variations regarding source magnifications and effective areas. Our number counts span ~2.5 dex in demagnified flux density, from several mJy down to tens of uJy. Our number counts are consistent with recent estimates from deep ALMA observations at a 3σ\sigma level. Below \approx 0.1 mJy, however, our cumulative counts are lower by \approx 1 dex, suggesting a flattening in the number counts. In our deepest ALMA mosaic, we estimate number counts for intrinsic flux densities \approx 4 times fainter than the rms level. This highlights the potential of probing the sub-10 uJy population in larger samples of galaxy cluster fields with deeper ALMA observations.Comment: 19 pages, 14 figures, 3 tables. Accepted for publication in A&

    ALMA reveals the molecular gas properties of five star-forming galaxies across the main sequence at 3

    Get PDF
    International audienceWe present the detection of CO(5-4) with S/N> 7 - 13 and a lower CO transition with S/N > 3 (CO(4-3) for 4 galaxies, and CO(3-2) for one) with ALMA in band 3 and 4 in five main sequence star-forming galaxies with stellar masses 3-6x10^10 M/M_sun at 3 < z < 3.5. We find a good correlation between the total far-infrared luminosity LFIR and the luminosity of the CO(5-4) transition L'CO(5-4), where L'CO(5-4) increases with SFR, indicating that CO(5-4) is a good tracer of the obscured SFR in these galaxies. The two galaxies that lie closer to the star-forming main sequence have CO SLED slopes that are comparable to other star-forming populations, such as local SMGs and BzK star-forming galaxies; the three objects with higher specific star formation rates (sSFR) have far steeper CO SLEDs, which possibly indicates a more concentrated episode of star formation. By exploiting the CO SLED slopes to extrapolate the luminosity of the CO(1-0) transition, and using a classical conversion factor for main sequence galaxies of alpha_CO = 3.8 M_sun(K km s^-1 pc^-2)^-1, we find that these galaxies are very gas rich, with molecular gas fractions between 60 and 80%, and quite long depletion times, between 0.2 and 1 Gyr. Finally, we obtain dynamical masses that are comparable with the sum of stellar and gas mass (at least for four out of five galaxies), allowing us to put a first constraint on the alpha_CO parameter for main sequence galaxies at an unprecedented redshift

    Dust properties of Lyman break galaxies at z3z\sim3

    Get PDF
    We explore from a statistical point of view the far-infrared (far-IR) and sub-millimeter (sub-mm) properties of a large sample of LBGs (22,000) at z~3 in the COSMOS field. The large number of galaxies allows us to split it in several bins as a function of UV luminosity, UV slope, and stellar mass to better sample their variety. We perform stacking analysis in PACS (100 and 160 um), SPIRE (250, 350 and 500 um) and AzTEC (1.1 mm) images. Our stacking procedure corrects the biases induced by galaxy clustering and incompleteness of our input catalogue in dense regions. We obtain the full IR spectral energy distributions (SED) of subsamples of LBGs and derive the mean IR luminosity as a function of UV luminosity, UV slope, and stellar mass. The average IRX is roughly constant over the UV luminosity range, with a mean of 7.9 (1.8 mag). However, it is correlated with UV slope, and stellar mass. We investigate using a statistically-controlled stacking analysis as a function of (stellar mass, UV slope) the dispersion of the IRX-UVslope and IRX-M* plane. Our results enable us to study the average relation between star-formation rate (SFR) and stellar mass, and we show that our LBG sample lies on the main sequence of star formation at z~3.Comment: Accepted to A&A, 17 Pages, 14 Figures, 2 Table

    The second Herschel–ATLAS Data Release – III. Optical and near-infrared counterparts in the North Galactic Plane field

    Get PDF
    This paper forms part of the second major public data release of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). In this work, we describe the identification of optical and near-infrared counterparts to the submillimetre detected sources in the 177 deg2 North Galactic Plane (NGP) field. We used the likelihood ratio method to identify counterparts in the Sloan Digital Sky Survey and in the United Kingdom InfraRed Telescope Imaging Deep Sky Survey within a search radius of 10 arcsec of the H-ATLAS sources with a 4σ detection at 250 μm. We obtained reliable (R ≥ 0.8) optical counterparts with r < 22.4 for 42 429 H-ATLAS sources (37.8 per cent), with an estimated completeness of 71.7 per cent and a false identification rate of 4.7 per cent. We also identified counterparts in the near-infrared using deeper K-band data which covers a smaller ∼25 deg2. We found reliable near-infrared counterparts to 61.8 per cent of the 250-μm-selected sources within that area. We assessed the performance of the likelihood ratio method to identify optical and near-infrared counterparts taking into account the depth and area of both input catalogues. Using catalogues with the same surface density of objects in the overlapping ∼25 deg2 area, we obtained that the reliable fraction in the near-infrared (54.8 per cent) is significantly higher than in the optical (36.4 per cent). Finally, using deep radio data which covers a small region of the NGP field, we found that 80–90 per cent of our reliable identifications are correct

    Resolving a dusty, star-forming SHiZELS galaxy at z = 2.2 with HST, ALMA, and SINFONI on kiloparsec scales

    Get PDF
    We present ∼0.15 arcsec spatial resolution imaging of SHiZELS-14, a massive (⁠M∗∼1011M⊙⁠), dusty, star-forming galaxy at z = 2.24. Our rest-frame ∼1kpc-scale, matched-resolution data comprise four different widely used tracers of star formation: the Hα emission line (from SINFONI/VLT), rest-frame UV continuum (from HST F606W imaging), the rest-frame far-infrared (from ALMA), and the radio continuum (from JVLA). Although originally identified by its modest Hα emission line flux, SHiZELS-14 appears to be a vigorously star-forming (⁠SFR∼1000M⊙yr−1⁠) example of a submillimetre galaxy, probably undergoing a merger. SHiZELS-14 displays a compact, dusty central starburst, as well as extended emission in Hα and the rest-frame optical and FIR. The UV emission is spatially offset from the peak of the dust continuum emission, and appears to trace holes in the dust distribution. We find that the dust attenuation varies across the spatial extent of the galaxy, reaching a peak of at least AH α ∼ 5 in the most dusty regions, although the extinction in the central starburst is likely to be much higher. Global star-formation rates inferred using standard calibrations for the different tracers vary from ∼10−1000M⊙yr−1⁠, and are particularly discrepant in the galaxy’s dusty centre. This galaxy highlights the biased view of the evolution of star-forming galaxies provided by shorter wavelength data

    SPT 0538-50: Physical conditions in the ISM of a strongly lensed dusty star-forming galaxy at z=2.8

    Full text link
    We present observations of SPT-S J053816-5030.8, a gravitationally-lensed dusty star forming galaxy (DSFG) at z = 2.7817, first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538-50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538-50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, VLT, ATCA, APEX, and the SMA. We use high resolution imaging from HST to de-blend SPT 0538-50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 +/- 4), we derive the intrinsic properties of SPT 0538-50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and - using molecular line fluxes - the excitation conditions within the ISM. The derived physical properties argue that we are witnessing compact, merger-driven star formation in SPT 0538-50, similar to local starburst galaxies, and unlike that seen in some other DSFGs at this epoch.Comment: 16 pages, 11 figures. Accepted for publication in Ap
    corecore