388 research outputs found
Dendritic Spine Shape Analysis: A Clustering Perspective
Functional properties of neurons are strongly coupled with their morphology.
Changes in neuronal activity alter morphological characteristics of dendritic
spines. First step towards understanding the structure-function relationship is
to group spines into main spine classes reported in the literature. Shape
analysis of dendritic spines can help neuroscientists understand the underlying
relationships. Due to unavailability of reliable automated tools, this analysis
is currently performed manually which is a time-intensive and subjective task.
Several studies on spine shape classification have been reported in the
literature, however, there is an on-going debate on whether distinct spine
shape classes exist or whether spines should be modeled through a continuum of
shape variations. Another challenge is the subjectivity and bias that is
introduced due to the supervised nature of classification approaches. In this
paper, we aim to address these issues by presenting a clustering perspective.
In this context, clustering may serve both confirmation of known patterns and
discovery of new ones. We perform cluster analysis on two-photon microscopic
images of spines using morphological, shape, and appearance based features and
gain insights into the spine shape analysis problem. We use histogram of
oriented gradients (HOG), disjunctive normal shape models (DNSM), morphological
features, and intensity profile based features for cluster analysis. We use
x-means to perform cluster analysis that selects the number of clusters
automatically using the Bayesian information criterion (BIC). For all features,
this analysis produces 4 clusters and we observe the formation of at least one
cluster consisting of spines which are difficult to be assigned to a known
class. This observation supports the argument of intermediate shape types.Comment: Accepted for BioImageComputing workshop at ECCV 201
ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair
Background: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. Results: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest.
Conclusion: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1
Increased CK5/CK8-Positive Intermediate Cells with Stromal Smooth Muscle Cell Atrophy in the Mice Lacking Prostate Epithelial Androgen Receptor
Results from tissue recombination experiments documented well that stromal androgen receptor (AR) plays essential roles in prostate development, but epithelial AR has little roles in prostate development. Using cell specific knockout AR strategy, we generated pes-ARKO mouse with knock out of AR only in the prostate epithelial cells and demonstrated that epithelial AR might also play important roles in the development of prostate gland. We found mice lacking the prostate epithelial AR have increased apoptosis in epithelial CK8-positive luminal cells and increased proliferation in epithelial CK5-positive basal cells. The consequences of these two contrasting results could then lead to the expansion of CK5/CK8-positive intermediate cells, accompanied by stromal atrophy and impaired ductal morphogenesis. Molecular mechanism dissection found AR target gene, TGF-β1, might play important roles in this epithelial AR-to-stromal morphogenesis modulation. Collectively, these results provided novel information relevant to epithelial AR functions in epithelial-stromal interactions during the development of normal prostate, and suggested AR could also function as suppressor in selective cells within prostate
Control of human endometrial stromal cell motility by PDGF-BB, HB-EGF and trophoblast-secreted factors
Human implantation involves extensive tissue remodeling at the fetal-maternal interface. It is becoming increasingly evident that not only trophoblast, but also decidualizing endometrial stromal cells are inherently motile and invasive, and likely contribute to the highly dynamic processes at the implantation site. The present study was undertaken to further characterize the mechanisms involved in the regulation of endometrial stromal cell motility and to identify trophoblast-derived factors that modulate migration. Among local growth factors known to be present at the time of implantation, heparin-binding epidermal growth factor-like growth factor (HB-EGF) triggered chemotaxis (directed locomotion), whereas platelet-derived growth factor (PDGF)-BB elicited both chemotaxis and chemokinesis (non-directed locomotion) of endometrial stromal cells. Supernatants of the trophoblast cell line AC-1M88 and of first trimester villous explant cultures stimulated chemotaxis but not chemokinesis. Proteome profiling for cytokines and angiogenesis factors revealed neither PDGF-BB nor HB-EGF in conditioned media from trophoblast cells or villous explants, while placental growth factor, vascular endothelial growth factor and PDGF-AA were identified as prominent secretory products. Among these, only PDGF-AA triggered endometrial stromal cell chemotaxis. Neutralization of PDGF-AA in trophoblast conditioned media, however, did not diminish chemoattractant activity, suggesting the presence of additional trophoblast-derived chemotactic factors. Pathway inhibitor studies revealed ERK1/2, PI3 kinase/Akt and p38 signaling as relevant for chemotactic motility, whereas chemokinesis depended primarily on PI3 kinase/Akt activation. Both chemotaxis and chemokinesis were stimulated upon inhibition of Rho-associated, coiled-coil containing protein kinase. The chemotactic response to trophoblast secretions was not blunted by inhibition of isolated signaling cascades, indicating activation of overlapping pathways in trophoblast-endometrial communication. In conclusion, trophoblast signals attract endometrial stromal cells, while PDGF-BB and HB-EGF, although not identified as trophoblast-derived, are local growth factors that may serve to fine-tune directed and non-directed migration at the implantation site
Vinegar production from fruit concentrates: effect on volatile composition and antioxidant activity
Vinegar stands as a highly appreciated fermented food product due to several functional properties and multiple applications. This work focuses on vinegar production from fruit wines derived from fruit concentrates, to attain a food product with nutritional added value. Four fruit vinegars (orange, mango, cherry and banana), were produced and characterized, with total acidities of 5.3 ± 0.3% for orange, 5.6 ± 0.2% for mango, 4.9 ± 0.4% for cherry and 5.4 ± 0.4% for banana. Acetification showed impact on aroma volatiles, mainly related to oxidative reactions. Minor volatiles associated with varietal aroma were identified, monoterpenic alcohols in orange vinegar, esters in banana vinegar, C13-norisoprenoids in cherry vinegar and lactones in mango vinegar, indicating fruit vinegars differentiated sensory quality. Total antioxidant activity analysis by FRAP, revealed fruit vinegars potential to preserve and deliver fruit functional properties. Antioxidant activity of fruit vinegars, expressed as equivalents of Fe2SO4, was of 11.0 ± 1.67 mmol L1 for orange, 4.8 ± 0.5 mmol L1 for mango, 18.6 ± 2.33 mmol L1 for cherry and 3.7 ± 0.3 mmol L1 for banana. Therefore, fruit vinegars presented antioxidant activity close to the reported for the corresponding fruit, and between 8 and 40 folds higher than the one found in commercial cider vinegar, demonstrating the high functional potential of these novel vinegar products.Authors would like to acknowledge the financial funding of: FruitVinegarDRINK QREN Project (Ref. 23209), Project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028" Co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER and the FCT Strategic Project Pest OE/EQB/LA0023/2013. Authors would also like to acknowledge the participation of Mendes Goncalves S.A. and Frulact S.A. staff, for the active input, which led to the work basis and rationale.info:eu-repo/semantics/publishedVersio
Prediction of Drought-Resistant Genes in Arabidopsis thaliana Using SVM-RFE
Background: Identifying genes with essential roles in resisting environmental stress rates high in agronomic importance. Although massive DNA microarray gene expression data have been generated for plants, current computational approaches underutilize these data for studying genotype-trait relationships. Some advanced gene identification methods have been explored for human diseases, but typically these methods have not been converted into publicly available software tools and cannot be applied to plants for identifying genes with agronomic traits. Methodology: In this study, we used 22 sets of Arabidopsis thaliana gene expression data from GEO to predict the key genes involved in water tolerance. We applied an SVM-RFE (Support Vector Machine-Recursive Feature Elimination) feature selection method for the prediction. To address small sample sizes, we developed a modified approach for SVM-RFE by using bootstrapping and leave-one-out cross-validation. We also expanded our study to predict genes involved in water susceptibility. Conclusions: We analyzed the top 10 genes predicted to be involved in water tolerance. Seven of them are connected to known biological processes in drought resistance. We also analyzed the top 100 genes in terms of their biological functions. Our study shows that the SVM-RFE method is a highly promising method in analyzing plant microarray data for studyin
C-Kit Binding Properties of Hesperidin (a Major Component of KMP6) as a Potential Anti-Allergic Agent
Accumulation of mast cells can be causally related to several allergic inflammations. Stem cell factor (SCF) as a mast cell chemotaxin induces mast cell migration. To clarify a new effect of Pyeongwee-San extract (KMP6, a drug for indigestion) for the treatment of allergy, we investigated the effects of KMP6 on SCF-induced migration of rat peritoneal mast cells (RPMCs). A molecular docking simulation showed that hesperidin, a major component of KMP6, controls the SCF and c-kit binding by interaction with the active site of the c-kit. KMP6 and hesperidin significantly inhibited SCF-induced migration of RPMCs (P<0.05). The ability of the SCF to enhance morphological alteration and F-actin formation was also abolished by treatment with KMP6 or hesperidin. KMP6 and hesperidin inhibited SCF-induced p38 MAPK activation. In addition, SCF-induced inflammatory cytokine production was significantly inhibited by treatment with KMP6 or hesperidin (P<0.05). Our results show for the first time that KMP6 potently regulates SCF-induced migration, p38 MAPK activation and inflammatory cytokines production through hindrance of SCF and c-kit binding in RPMCs. Such modulation may have functional consequences during KMP6 treatment, especially mast cell-mediated allergic inflammation disorders
Impact of the Location of CpG Methylation within the GSTP1 Gene on Its Specificity as a DNA Marker for Hepatocellular Carcinoma
Hypermethylation of the glutathione S-transferase π 1 (GSTP1) gene promoter region has been reported to be a potential biomarker to distinguish hepatocellular carcinoma (HCC) from other liver diseases. However, reports regarding how specific a marker it is have ranged from 100% to 0%. We hypothesized that, to a large extent, the variation of specificity depends on the location of the CpG sites analyzed. To test this hypothesis, we compared the methylation status of the GSTP1 promoter region of the DNA isolated from HCC, cirrhosis, hepatitis, and normal liver tissues by bisulfite–PCR sequencing. We found that the 5′ region of the position −48 nt from the transcription start site of the GSTP1 gene is selectively methylated in HCC, whereas the 3′ region is methylated in all liver tissues examined, including normal liver and the HCC tissue. Interestingly, when DNA derived from fetal liver and 11 nonhepatic normal tissue was also examined by bisulfite-PCR sequencing, we found that methylation of the 3′ region of the promoter appeared to be liver-specific. A methylation-specific PCR assay targeting the 5′ region of the promoter was developed and used to quantify the methylated GSTP1 gene in various diseased liver tissues including HCC. When we used an assay targeting the 3′ region, we found that the methylation of the 5′-end of the GSTP1 promoter was significantly more specific than that of the 3′-end (97.1% vs. 60%, p<0.0001 by Fisher's exact test) for distinguishing HCC (n = 120) from hepatitis (n = 35) and cirrhosis (n = 35). Encouragingly, 33.8% of the AFP-negative HCC contained the methylated GSTP1 gene. This study clearly demonstrates the importance of the location of CpG site methylation for HCC specificity and how liver-specific DNA methylation should be considered when an epigenetic DNA marker is studied for detection of HCC
- …