40 research outputs found

    Assessment of the effectiveness of the embedded through-section technique for the shear strengthening of RC beams

    Get PDF
    Embedded Through-Section (ETS) technique is a relatively recent shear strengthening strategy for reinforced concrete (RC) beams, and consists on opening holes across the depth of the beam’s cross section, with the desired inclinations, where bars are introduced and are bonded to the concrete substrate with adhesive materials. To assess the effectiveness of this technique, a comprehensive experimental program composed of 14 RC beams was carried out, and the obtained results confirm the feasibility of the ETS method and revealed that: (i) inclined ETS strengthening bars were more effective than vertical ETS bars, and the shear capacity of the beams has increased with the decrease of the spacing between bars; (ii) brittle shear failure was converted in ductile flexural failure, and (iii) the contribution of the ETS strengthening bars for the beam shear resistance was limited by the concrete crushing or due to the yielding of the longitudinal reinforcement. The applicability of the ACI 318 (2008) and Eurocode 2 (2004) standard specifications for shear resistance was examined and a good agreement between the experimental and analytical results was obtained.The study reported in this article is part of the research project 'DURCOST', PTDC/ECM/105700/2008, supported by FCT. The authors wish to acknowledge the support provided by the 'Casais', Secil (Unibetao, Braga) and Sika Portugal Companies. The first author acknowledges the National Council for Scientific and Technological Development (CNPq), Brazil, for financial support for scholarship (GDE 200953/2007-9)

    Environmental Particle Emissions due to Automated Drilling of Polypropylene Composites and Nanocomposites Reinforced with Talc, Montmorillonite and Wollastonite

    Get PDF
    In this study, the effect on nanoparticle emissions due to drilling on Polypropylene (PP) reinforced with 20% talc, 5% montmorillonite (MMT) and 5% Wollastonite (WO) is investigated. The study is the first to explore the nanoparticle release from WO and talc reinforced composites and compares the results to previously researched MMT. With 5% WO, equivalent tensile properties with a 10 % weight reduction were obtained relative to the reference 20% talc sample. The materials were fabricated through injection moulding. The nanorelease studies were undertaken using the controlled drilling methodology for nanoparticle exposure assessment developed within the European Commission funded SIRENA Life 11 ENV/ES/506 project. Measurements were taken using CPC and DMS50 equipment for real-time characterization and measurements. The particle number concentration (of particles <1000nm) and particle size distribution (4.87nm - 562.34nm) of the particles emitted during drilling were evaluated to investigate the effect of the silicate fillers on the particles released. The nano-filled samples exhibited a 33% decrease (MMT sample) or a 30% increase (WO sample) on the average particle number concentration released in comparison to the neat polypropylene sample. The size distribution data displayed a substantial percentage of the particles released from the PP, PP/WO and PP/MMT samples to be between 5-20nm, whereas the PP/talc sample emitted larger particle diameters.The work is funded by and part of the European Commission Life project named Simulation of the release of nanomaterials from consumer products for environmental exposure assessment (SIRENA, Pr. No. LIFE 11 ENV/ES/596). The access and use of the facilities at the Flemish Institute for Technological Research (VITO) was funded by QualityNano Project through Transnational Access (TA Application VITO-TAF-382 and VITO-TAF-500) under the European Commission, Grant Agreement No: INFRA-2010-262163. Kristof is also thankful for partial funding by the School of Engineering at Robert Gordon University for his studentship

    Role of processing history on the mechanical and electrical behavior of melt-compounded polycarbonate-multiwalled carbon nanotube nanocomposites

    Get PDF
    This work investigates the effects of primary compounding temperature and secondary melt processes on the mechanical response and electrical resistivity of polycarbonate filled with 3 wt % multiwalled carbon nanotubes (CNT). Nanocomposites were melt compounded in an industrial setting at a range of temperatures, and subsequently either injection molded or compression molded to produce specimens for the measurement of electrical resistivity, surface hardness, and uniaxial tensile properties. Secondary melt processing was found to be the dominant process in determining the final properties. The effects observed have been attributed to structural arrangements of the CNT network as suggested by morphological evidence of optical microscopy and resistivity measurements. Properties were found to be relatively insensitive to compounding temperature. The measured elastic moduli were consistent with existing micromechanical models

    Investigation into the material properties of wooden composite structures with in-situ fibre reinforcement using additive manufacturing

    Get PDF
    In contrast to subtractive manufacturing techniques, additive manufacturing processes are known for their high efficiency in regards to utilisation of feedstock. However the various polymer, metallic and composite feedstocks used within additive manufacturing are mainly derived from energy consuming, inefficient methods, often originating from non-sustainable sources. This work explores the mechanical properties of additively manufactured composite structures fabricated from recycled sustainable wood waste with the aim of enhancing mechanical properties through glass fibre reinforcement. In the first instance, samples were formed by pouring formulation of wood waste (wood flour) and thermosetting binder (urea formaldehyde), with and without glass fibres, into a mould. The same formulations were used to additively manufacture samples via a layered deposition technique. Samples manufactured using each technique were cured and subsequently tested for their mechanical properties. Additively manufactured samples had superior mechanical properties, with up to 73% increase in tensile strength compared to moulded composites due to a densification of feedstock/paste and fibre in-situ directional alignment

    Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling

    Get PDF
    This paper was published in the journal Polymer Testing and the definitive published version is available at http://dx.doi.org/10.1016/j.polymertesting.2016.12.016.© 2016 Elsevier LtdAn experimental study of temperature-dependent mechanical behaviour of Poly-methyl methacrylate (PMMA) was performed at a range of temperatures (20 °C, 40 °C, 60 °C and 80 °C) below its glass transition point (108 °C) under uniaxial tension and three-point bending loading conditions. This study was accompanied by simulations aimed at identification of material parameters for two different constitutive material models. Experimental flow curves obtained for PMMA were used in elasto-plastic analysis, while a sim-flow optimization tool was employed for a two-layer viscoplasticity model. The temperature increase significantly affected mechanical behaviour of PMMA, with quasi-brittle fracture at room temperature and super-plastic behaviour (ε>110%) at 80 °C. The two-layer viscoplasticity material model was found to agree better with the experimental data obtained for uniaxial tension than the elasto-plastic description

    A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend

    Get PDF
    The use of biobased plastics is of great importance for many applications. Blending thermoplastic polylactide (PLA) with polyhydroxyalkanoate (PHA) enables the formulation of a more mechanically powerful material and this enables tailored biodegradation properties. In this study we demonstrate the 3D printing of a PLA/PHA blend as a potential candidate for biocompatible material applications. The filament for 3D printing consisted of PHA, which contains predominantly 3-hydroxybutyrate units and a small amount of 3-hydroxyvalerate units, as revealed by multistage mass spectrometry (ESI-MSn). This research found that the properties of 3D printed species before and during abiotic degradation are dependent on printing orientation. Furthermore, the 3D printed specimens exhibited good biocompatibility with HEK293 cells, indicating real promise as biological scaffolds for tissue engineering applications

    Mechanical properties of 16 different FDM-plastic types

    No full text
    corecore