105 research outputs found

    The Mid-Infrared Fundamental Plane of Early-Type Galaxies

    Get PDF
    Three observables of early-type galaxies - size (rer_{e}), surface brightness (IeI_{e}), and velocity dispersion (σ0\sigma_{0}) - form a tight planar correlation known as the fundamental plane (FP), which has provided great insights into the galaxy formation and the evolution processes. However, the FP has been found to be tilted against the simple virial expectation, prompting debates on its origin. In order to investigate the contribution of systematic stellar population variation to the FP tilt, we study here the FP relations of early-type galaxies in mid-infrared (MIR) which may represent the stellar mass well. We examined the wavelength dependence of the FP coefficients, aa and bb in logre=alogσ0+bloge+c\log r_{e}= a\log\sigma_{0} + b\log_{e} + c, using a sample of 56 early-type galaxies for which visible (V-band), near-infrared (K-band), and MIR (Spitzer IRAC, 3.6--8.0μ\mum) data are available. We find that the coefficient aa increases as a function of wavelength as da/dλ=0.11±0.04μm1da/d\lambda=0.11\pm0.04\mu m^{-1}, while the coefficient bb reaches the closest to -1 at 3.6--5.8μ\mum. When applied to the visible FP coefficients derived from a larger sample of nearby early-type galaxies, we get the FP relation with (a,b)(a,b) \simeq (1.6--1.8,-0.9) at 3.6μ\mum. Our result suggests that the stellar population effect can explain more than half of the FP tilt, closing the gap between the virial expectation and the optical FP. The reduction in the FP tilt is reflected in the dynamical mass-to-light ratio, Mdyn/LM_{dyn}/L, dependence on LL which decreases toward 3.6--5.8μ\mum, suggesting that the MIR light better represents mass than the shorter wavelengths.Comment: 5 pages, 3 figures, to appear in ApJ

    The Host Galaxy and Optical Light Curve of the Gamma-Ray Burst GRB 980703

    Get PDF
    We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V_gal = 23.00 +/- 0.10, (V-R)_gal = 0.43 +/- 0.13, and a centre that is approximately 0.2 mag bluer than the outer regions of the galaxy. The galaxy has a star-formation rate of 8-13 M_sun/yr, assuming no extinction in the host. We find that the galaxy is best fit by a Sersic R^(1/n) profile with n ~= 1.0 and a half-light radius of 0.13 arcsec (= 0.72/h_100 proper kpc). This corresponds to an exponential disk with a scale radius of 0.22 arcsec (= 1.21/h_100 proper kpc). Subtracting a fit with elliptical isophotes leaves large residuals, which suggests that the host galaxy has a somewhat irregular morphology, but we are unable to connect the location of GRB 980703 with any special features in the host. The host galaxy appears to be a typical example of a compact star forming galaxy similar to those found in the Hubble Deep Field North. The R-band light curve of the optical afterglow associated with this gamma-ray burst is consistent with a single power-law decay having a slope of alpha = -1.37 +/- 0.14. Due to the bright underlying host galaxy the late time properties of the light-curve are very poorly constrained. The decay of the optical light curve is consistent with a contribution from an underlying Type Ic supernova like SN1998bw, or a dust echo, but such contributions cannot be securely established.Comment: 9 pages, 5 figures, LaTeX using A&A Document Class v4.05, to appear in A&

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome

    The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    Get PDF
    We describe the design and data sample from the DEEP2 Galaxy Redshift Survey, the densest and largest precision-redshift survey of galaxies at z ~ 1 completed to date. The survey has conducted a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M_B = -20 at z ~ 1 via ~90 nights of observation on the DEIMOS spectrograph at Keck Observatory. DEEP2 covers an area of 2.8 deg^2 divided into four separate fields, observed to a limiting apparent magnitude of R_AB=24.1. Objects with z < 0.7 are rejected based on BRI photometry in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately sixty percent of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets which fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45. The DEIMOS 1200-line/mm grating used for the survey delivers high spectral resolution (R~6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. DEEP2 surpasses other deep precision-redshift surveys at z ~ 1 in terms of galaxy numbers, redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the publicly-available DEEP2 DEIMOS data reduction pipelines. [Abridged]Comment: submitted to ApJS; data products available for download at http://deep.berkeley.edu/DR4

    On the buildup of massive early-type galaxies at z<~1. I- Reconciling their hierarchical assembly with mass-downsizing

    Get PDF
    Several studies have tried to ascertain whether or not the increase in abundance of the early-type galaxies (E-S0a's) with time is mainly due to major mergers, reaching opposite conclusions. We have tested it directly through semi-analytical modelling, by studying how the massive early-type galaxies with log(M_*/Msun)>11 at z~0 (mETGs) would have evolved backwards-in-time, under the hypothesis that each major merger gives place to an early-type galaxy. The study was carried out just considering the major mergers strictly reported by observations at each redshift, and assuming that gas-rich major mergers experience transitory phases of dust-reddened, star-forming galaxies (DSFs). The model is able to reproduce the observed evolution of the galaxy LFs at z<~1, simultaneously for different rest-frame bands (B, I, and K) and for different selection criteria on color and morphology. It also provides a framework in which apparently-contradictory results on the recent evolution of the luminosity function (LF) of massive, red galaxies can be reconciled, just considering that observational samples of red galaxies can be significantly contaminated by DSFs. The model proves that it is feasible to build up ~50-60% of the present-day mETG population at z<~1 and to reproduce the observational excess by a factor of ~4-5 of late-type galaxies at 0.8<z<1 through the coordinated action of wet, mixed, and dry major mergers, fulfilling global trends that are in general agreement with mass-downsizing. The bulk of this assembly takes place during ~1 Gyr elapsed at 0.8<z<1. The model suggests that major mergers have been the main driver for the observational migration of mass from the massive-end of the blue galaxy cloud to that of the red sequence in the last ~8 Gyr.(Abridged)Comment: Accepted for publication in Astronomy & Astrophysics; 21 pages, 8 figures. Minor corrections included, shortened title. Results and conclusions unchange

    Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-Regulated in Nonalcoholic Fatty Liver

    Get PDF
    Triglyceride accumulation in nonalcoholic fatty liver (NAFL) results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox) transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB). Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance

    Dynamic thoracohumeral kinematics are dependent upon the etiology of the shoulder injury

    Full text link
    [EN] Obtaining kinematic patterns that depend on the shoulder injury may be important when planning rehabilitation. The main goal of this study is to explore whether the kinematic patterns of continuous and repetitive shoulder elevation motions are different according to the type of shoulder injury in question, specifically tendinopathy or rotator cuff tear, and to analyze the influence of the load handled during its assessment. For this purpose, 19 individuals with tendinopathy and 9 with rotator cuff tear performed a repetitive scaption movement that was assessed with stereophotogrammetry. Furthermore, static range of motion (ROM) and isometric strength were evaluated with a goniometer and a dynamometer, respectively. Dynamic measurements of maximum elevation (Emax), variablility of the maximum angle (VMA), maximum angular velocity (Velmax), and time to maximum velocity (tmaxvel) were found to be significantly different between the tendinopathy group (TG) and the rotator cuff tear group (RTCG). No differences were found in the ROM assessed with goniometry and the isometric strength. The effect of increasing the load placed in the hand during the scaption movement led to significant differences in Emax, VMA, tmaxvel and repeatability. Therefore, only the dynamic variables showed sufficient capability of detecting differences in functional performance associated with structural shoulder injury. The differences observed in the kinematic variables between patients with tendinopathy and rotator cuff tear seem to be related to alterations in thoracohumeral rhythm and neuromuscular control. Kinematic analysis may contribute to a better understanding of the functional impact of shoulder injuries, which would help in the assessment and treatment of shoulder pain.This work was funded by the Spanish Government, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, and co-financed by EU FEDER funds (Grant DPI2013-44227-R). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Lopez Pascual, J.; Page Del Pozo, AF.; Serra Añó, P. (2017). Dynamic thoracohumeral kinematics are dependent upon the etiology of the shoulder injury. PLoS ONE. 12(8). https://doi.org/10.1371/journal.pone.0183954S12

    The metallicities of luminous, massive field galaxies at intermediate redshifts

    Full text link
    We derive oxygen abundances for a sample of 40 luminous (M_{B} < -19), star-forming, mostly disk, field galaxies with redshifts in the range 0.2 < z < 0.8,withamedianof=0.45.Oxygenabundances,relativetohydrogen,oftheinterstellaremittinggasareestimatedbymeansoftheempiricallycalibratedstrongemissionlineratiotechnique.Thederived(12+log(O/H))valuesrangefrom8.4to9.0,withamedianof8.7.Twentyofthesegalaxieshavesecurelymeasuredrotationvelocities,intherange50244km/s.Themeasuredemissionlineequivalentwidthsanddiagnosticratiosfortheintermediateredshiftgalaxiescoversimilarrangestothoseobservedacrossalargesampleoflocalgalaxies.Theestimatedoxygenabundancesforourluminousstarformingintermediateredshiftgalaxiescoverthesamerangeastheirlocalcounterparts.However,atagivengalaxyluminosity,manyofourgalaxieshavesignificantlyloweroxygenabundances,i.e.,, with a median of = 0.45. Oxygen abundances, relative to hydrogen, of the interstellar emitting gas are estimated by means of the empirically calibrated strong emission line ratio technique. The derived (12+log(O/H)) values range from 8.4 to 9.0, with a median of 8.7. Twenty of these galaxies have securely measured rotation velocities, in the range 50--244 km/s. The measured emission line equivalent widths and diagnostic ratios for the intermediate redshift galaxies cover similar ranges to those observed across a large sample of local galaxies. The estimated oxygen abundances for our luminous star-forming intermediate redshift galaxies cover the same range as their local counterparts. However, at a given galaxy luminosity, many of our galaxies have significantly lower oxygen abundances, i.e., (12+log(O/H))~8.6$, than local galaxies with similar luminosities. Interestingly, these luminous, massive, intermediate redshift, star-forming galaxies with low oxygen abundances exhibit physical conditions, i.e., emission line equivalent width and ionization state, very similar to those of local faint and metal-poor star-forming galaxies. The oxygen abundance of the interstellar gas does not seem to correlate with the maximum rotation velocity or the emission scale length of the parent galaxy. This suggests that there is a diversity in the intrinsic properties of the massive field galaxy population at intermediate redshifts (ABRIDGED).Comment: 19 pages, 14 figures, MNRAS in pres
    corecore