110 research outputs found

    Risks of dengue secondary infective biting associated with aedes aegypti in home environments in Monterrey, Mexico

    Get PDF
    Abstract. Secondary dengue virus infections are a major risk for developing dengue hemorrhagic fever. Recent exposure to infectious bites of Aedes aegypti (L.) females in previously diagnosed dengue cases fulfills the epidemiological model of dengue hemorrhagic fever. A study was comprised of 357 (89.2%) dengue and 43 (10.8%) dengue hemorrhagic fever cases confirmed by laboratory tests and clinical manifestations. An entomological survey was done in homes and backyards. Concurrently, a questionnaire was used to assess the impact of healthpromotion campaigns through knowledge of the vector and its epidemiological role. Seventy-six (28.4%) of the 268 (67.0%) total wet or dry oviposition sites were positive for the presence of larvae or pupae, while adult Ae. aegypti were found in 32 (8.0%). One hundred thirty-two (33%) householders who formerly had dengue fever or dengue hemorrhagic fever had knowledge of either larval or adult dengue vector stages. According to gender distribution, 145 (36.2%) and 14 (3.5%) of the males confirmed with cases of dengue and dengue hemorrhagic fever lived in houses with 17.9 and 2% of the Ae. aegypti larval and pupal habitats. Houses with females who had dengue and dengue hemorrhagic fever were 212 (53%) and 29 (7.3%), with containers with immature Ae. aegypti in 19.4 and 7%, respectively. Lack of sustainability of government-targeted health education campaigns is the major problem for involving communities in prevention and control of dengu

    Global Self-Organization of the Cellular Metabolic Structure

    Get PDF
    Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models'' are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks'' (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.Supported by the Spanish Ministry of Science and Education Grants MTM2005-01504, MTM2004-04665, partly with FEDER funds, and by the Basque Government, Grant IT252-07

    The Neovolcanic Axis Is a Barrier to Gene Flow among Aedes aegypti Populations in Mexico That Differ in Vector Competence for Dengue 2 Virus

    Get PDF
    The Neovolcanic axis (NVA) traverses Mexico at the 19th parallel and is considered to be a geographic barrier to many species. We have demonstrated that the intersection of the NVA with the coast in Veracruz state is a barrier to gene flow in Ae. aegypti. This was unexpected because the intersection of the NVA with the Pacific Coast is not a barrier to gene flow. Further studies to identify the actual mechanism(s) that is(are) contributing to the lack of gene flow will provide important information on the trafficking potential of Ae. aegypti, which will be of great value to Ae. aegypti control programs. There are significant differences in vector competence for dengue virus between mosquitoes north and south of the NVA, but the epidemiological significance of these finding remains to be determined. Future studies will determine if, for example, the genes that condition midgut infection and vector competence of Ae. aegypti populations provide biomarkers for risk of dengue transmission. Such biomarkers could be of great value to control programs in resource limited environments by allowing targeting of vector control efforts to areas at most risk for epidemic dengue and dengue hemorrhagic fever

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life

    Effects of transcutaneous electrical nerve stimulation (TENS) on arterial stiffness and blood pressure in resistant hypertensive individuals: study protocol for a randomized controlled trial

    Full text link

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link
    corecore