7 research outputs found

    Impact of Chlamydia trachomatis in the reproductive setting: British Fertility Society Guidelines for practice

    Get PDF
    Chlamydia trachomatis infection of the genital tract is the most common sexually transmitted infection and has a world-wide distribution. The consequences of infection have an adverse effect on the reproductive health of women and are a common cause of infertility. Recent evidence also suggests an adverse effect on male reproduction. There is a need to standardise the approach in managing the impact of C. trachomatis infection on reproductive health. We have surveyed current UK practice towards screening and management of Chlamydia infections in the fertility setting. We found that at least 90% of clinicians surveyed offered screening. The literature on this topic was examined and revealed a paucity of solid evidence for estimating the risks of long-term reproductive sequelae following lower genital tract infection with C. trachomatis. The mechanism for the damage that occurs after Chlamydial infections is uncertain. However, instrumentation of the uterus in women with C. trachomatis infection is associated with a high risk of pelvic inflammatory disease, which can be prevented by appropriate antibiotic treatment and may prevent infected women from being at increased risk of the adverse sequelae, such as ectopic pregnancy and tubal factor infertility. Recommendations for practice have been proposed and the need for further studies is identified

    Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV

    Get PDF
    The ttÂŻ charge asymmetry in proton-proton collisions at s√ = 7 TeV is measured using the dilepton decay channel (ee, e μ , or μμ ). The data correspond to a total integrated luminosity of 5.0 fb −1 , collected by the CMS experiment at the LHC. The tt and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be A C = −0 . 010 ± 0 . 017 (stat . ) ± 0 . 008 (syst . ) and AlepC = 0 . 009 ± 0 . 010 (stat . ) ± 0 . 006 (syst . ). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the ttÂŻ system. All measurements are consistent with the expectations of the standard model

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade

    No full text
    New diagnostic, modelling and plant capability on the Mega AmpĂšre Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved T i measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L–H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low- k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. T e inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional AlfvĂ©n eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows

    A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    Get PDF
    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force-the W+, W-, and Z(0) bosons-as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 x 10(6). The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    The article is the pre-print version of the final publishing paper that is available from the link below.Results are presented from searches for the standard model Higgs boson in proton–proton collisions At √s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb−1 at 7TeV and 5.3 fb−1 at 8 TeV. The search is performed in five decay modes: γγ, ZZ, W+W−, τ+τ−, and bb. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, γγ and ZZ; a fit to these signals gives a mass of 125.3±0.4(stat.)±0.5(syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one
    corecore