75 research outputs found

    A Spin-Isospin Dependent 3N Scattering Formalism in a 3D Faddeev Scheme

    Full text link
    We have introduced a spin-isospin dependent three-dimensional approach for formulation of the three-nucleon scattering. Faddeev equation is expressed in terms of vector Jacobi momenta and spin-isospin quantum numbers of each nucleon. Our formalism is based on connecting the transition amplitude TT to momentum-helicity representations of the two-body tt-matrix and the deuteron wave function. Finally the expressions for nucleon-deuteron elastic scattering and full breakup process amplitudes are presented.Comment: 17 page

    Vegetative compatibility grouping of Verticillium dahliae from pistachio in Iran

    Get PDF
    Sixty-nine isolates of Verticillium dahliae were recovered from pistachio (Pistacia vera) trees in the Kerman province of Iran. They were analyzed using complementation tests with nitrate-nonutilizing (nit) mutants to identify their vegetative compatibility groups (VCGs) and were compared with the four internationally recognized VCGs. Based on their ability to form heterokaryons, three local VCGs were identifi ed (using reference strains) as VCG2B (50 isolates), VCG4A (7 isolates) and VCG1 (2 isolates). Ten isolates could not be characterized with the reference strains. Thirty-four cotton isolates were also compared with the pistachio isolates using the reference strains; they were identifi ed as VCG1 (10 isolates), VCG2B (11 isolates) and VCG4A (6 isolates). (A few isolates belonged to both VCG2A and VCG2B, and a few to both VCG4A and VCG4B.) The cotton defoliating isolates (D pathotype) belonged to VCG1, and the cotton non-defoliating isolates (ND pathotype) to VCG2 and VCG4. Greenhouse pathogenicity tests of 22 isolates on cotton and okra showed that all cotton and pistachio VCG1 isolates were highly virulent and were of the defoliating pathotype (D) in both hosts. On the other hand, the isolates of VCG2B and VCG4B ranged in virulence from weakly virulent to highly virulent irrespective of their host origin. The similarity in the VCG spectrum suggests that cotton was the most likely source of Verticillium dahliae in pistachio in Iran

    Triton photodisintegration in three-dimensional approach

    Full text link
    Two- and three- particles photodisintegration of the triton is investigated in a three-dimensional (3D) Faddeev approach. For this purpose the Jacobi momentum vectors for three particles system and spin-isospin quantum numbers of the individual nucleons are considered. Based on this picture the three-nucleon Faddeev integral equations with the two-nucleon interaction are formulated without employing the partial wave decomposition. The single nucleon current as well as π−\pi- and ρ−\rho- like exchange currents are used in an appropriate form to be employed in 3D approach. The exchange currents are derived from AV18 NN force. The two-body t-matrix, Deuteron and Triton wave functions are calculated in the 3D approach by using AV18 potential. Benchmarks are presented to compare the total cross section for the two- and three- particles photodisintegration in the range of EÎł<30MeVE_{\gamma}<30 MeV. The 3D Faddeev approach shows promising results

    Different Methods for the Two-Nucleon T-Matrix in the Operator Form

    Get PDF
    We compare three methods to calculate the nucleon-nucleon t-matrix based on the three-dimensional formulation of J. Golak et al., Phys. Rev. C 81, 034006, (2010). In the first place we solve a system of complex linear inhomogeneous equations directly for the t-matrix. Our second method is based on iterations and a variant of the Lanczos algorithm. In the third case we obtain the t-matrix in two steps, solving a system of real linear equations for the k-matrix expansion coefficients and then solving an on-shell equation, which connects the scalar coefficients of the k- and t-matrices. A very good agreement among the three methods is demonstrated for selected nucleon-nucleon scattering observables using a chiral next-to-next-to-leading-order neutron-proton potential. We also apply our three-dimensional framework to the demanding problem of proton-proton scattering, using a corresponding version of the nucleon-nucleon potential and supplementing it with the (screened) Coulomb force, taken also in the three-dimensional form. We show converged results for two different screening functions and find a very good agreement with other methods dealing with proton-proton scattering.Comment: 18 pages, 10 figures (54 eps files

    Four-Body Bound State Calculations in Three-Dimensional Approach

    Get PDF
    The four-body bound state with two-body interactions is formulated in Three-Dimensional approach, a recently developed momentum space representation which greatly simplifies the numerical calculations of few-body systems without performing the partial wave decomposition. The obtained three-dimensional Faddeev-Yakubovsky integral equations are solved with two-body potentials. Results for four-body binding energies are in good agreement with achievements of the other methods.Comment: 29 pages, 2 eps figures, 8 tables, REVTeX

    Establishing What Constitutes a Healthy Human Gut Microbiome: State of the Science, Regulatory Considerations, and Future Directions.

    Get PDF
    On December 17, 2018, the North American branch of the International Life Sciences Institute (ILSI North America) convened a workshop "Can We Begin to Define a Healthy Gut Microbiome Through Quantifiable Characteristics?" with &gt;40 invited academic, government, and industry experts in Washington, DC. The workshop objectives were to 1) develop a collective expert assessment of the state of the evidence on the human gut microbiome and associated human health benefits, 2) see if there was sufficient evidence to establish measurable gut microbiome characteristics that could serve as indicators of "health," 3) identify short- and long-term research needs to fully characterize healthy gut microbiome-host relationships, and 4) publish the findings. Conclusions were as follows: 1) mechanistic links of specific changes in gut microbiome structure with function or markers of human health are not yet established; 2) it is not established if dysbiosis is a cause, consequence, or both of changes in human gut epithelial function and disease; 3) microbiome communities are highly individualized, show a high degree of interindividual variation to perturbation, and tend to be stable over years; 4) the complexity of microbiome-host interactions requires a comprehensive, multidisciplinary research agenda to elucidate relationships between gut microbiome and host health; 5) biomarkers and/or surrogate indicators of host function and pathogenic processes based on the microbiome need to be determined and validated, along with normal ranges, using approaches similar to those used to establish biomarkers and/or surrogate indicators based on host metabolic phenotypes; 6) future studies measuring responses to an exposure or intervention need to combine validated microbiome-related biomarkers and/or surrogate indicators with multiomics characterization of the microbiome; and 7) because static genetic sampling misses important short- and long-term microbiome-related dynamic changes to host health, future studies must be powered to account for inter- and intraindividual variation and should use repeated measures within individuals

    Time-dependent brittle creep in Darley Dale sandstone

    Get PDF
    The characterization of time-dependent brittle rock deformation is fundamental to understanding the long-term evolution and dynamics of the Earth's crust. The chemical influence of pore water promotes time-dependent deformation through stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Here, we report results from a study of time-dependent brittle creep in water-saturated samples of Darley Dale sandstone (initial porosity, 13%) under triaxial stress conditions. Results from conventional creep experiments show that axial strain rate is heavily dependent on the applied differential stress. A reduction of only 10% in differential stress results in a decrease in strain rate of more than two orders of magnitude. However, natural sample variability means that multiple experiments must be performed to yield consistent results. Hence we also demonstrate that the use of stress-stepping creep experiments can successfully overcome this issue. We have used the stress-stepping technique to investigate the influence of confining pressure at effective confining pressures of 10, 30, and 50 MPa (while maintaining a constant 20 MPa pore fluid pressure). Our results demonstrate that the stress corrosion process appears to be significantly inhibited at higher effective pressures, with the creep strain rate reduced by multiple orders of magnitude. The influence of doubling the pore fluid pressure, however, while maintaining a constant effective confining pressure, is shown to influence the rate of stress corrosion within the range expected from sample variability. We discuss these results in the context of microstructural analysis, acoustic emission hypocenter locations, and fits to proposed macroscopic creep laws
    • 

    corecore