19 research outputs found
Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research and practice
As far back as the industrial revolution, great leaps in technical innovation succeeded in transforming numerous manual tasks and processes that had been in existence for decades where humans had reached the limits of physical capacity. Artificial Intelligence (AI) offers this same transformative potential for the augmentation and potential replacement of human tasks and activities within a wide range of industrial, intellectual and social applications. The pace of change for this new AI technological age is staggering, with new breakthroughs in algorithmic machine learning and autonomous decision making engendering new opportunities for continued innovation. The impact of AI is significant, with industries ranging from: finance, retail, healthcare, manufacturing, supply chain and logistics all set to be disrupted by the onset of AI technologies. The study brings together the collective insight from a number of leading expert contributors to highlight the significant opportunities, challenges and potential research agenda posed by the rapid emergence of AI within a number of domains: technological, business and management, science and technology, government and public sector. The research offers significant and timely insight to AI technology and its impact on the future of industry and society in general
Resource capacity allocation to stochastic dynamic competitors:knapsack problem for perishable items and index-knapsack heuristic
In this paper we propose an approach for solving problems of optimal resource capacity allocation to a collection of stochastic dynamic competitors. In particular, we introduce the knapsack problem for perishable items, which concerns the optimal dynamic allocation of a limited knapsack to a collection of perishable or non-perishable items. We formulate the problem in the framework of Markov decision processes, we relax and decompose it, and we design a novel index-knapsack heuristic which generalizes the index rule and it is optimal in some specific instances. Such a heuristic bridges the gap between static/deterministic optimization and dynamic/stochastic optimization by stressing the connection between the classic knapsack problem and dynamic resource allocation. The performance of the proposed heuristic is evaluated in a systematic computational study, showing an exceptional near-optimality and a significant superiority over the index rule and over the benchmark earlier-deadline-first policy. Finally we extend our results to several related revenue management problems
The impact of increased brand penetration on luxury desirability: a dual effect
International audienc