4,600 research outputs found
Eocene dike orientations across the Washington Cascades in response to a major strike-slip faulting episode and ridge-trench interaction
The northern Cascade Mountains in Washington (USA) preserve an exceptional shallow to mid-crustal record of Eocene transtension marked by dextral strike-slip faulting, intrusion of dike swarms and plutons, rapid non-marine sedimentation, and ductile flow and rapid cooling in parts of the North Cascades crystalline core. Transtension occurred during ridge-trench interaction with the formation of a slab window, and slab rollback and break-off occurred shortly after collision of the Siletzia oceanic plateau at ca. 50 Ma. Dike swarms intruded a \u3e1250 km2 region between ca. 49.3 Ma and 44.9 Ma, and orientations of more than 1500 measured dikes coupled with geochronologic data provide important snapshots of the regional strain field. The mafic Teanaway dikes are the southernmost and most voluminous of the swarms. They strike NE (mean = 036°) and average ~15 m in thickness. To the north, rhyolitic to basaltic dikes overlap spatially with 49.3-46.5 Ma, mainly granodioritic plutons, but they typically predate the nearby plutons by ca. 500 k.y. The average orientations of five of the six dike domains range from 010° to 058°; W-NW- to NW-striking dikes characterize one domain and are found in lesser amounts in a few other domains. Overall, the mean strike for all Eocene dikes is 035°, and the average extension direction (305°-125°) is oblique to the strike (~320°) of the North Cascades orogen. Extension by diking reached ~45% in one \u3e7-km-long transect through the Teanaway swarm and ranged from ~5% to locally ~79% in shorter transects across other swarms, which corresponds to a minimum of ~12 km of extension. The dominant NE-striking dikes are compatible with the dextral motion on the N- to NW-striking (~355-320°) regional strike-slip faults. Some of the W-NW- to NW-striking dikes were arguably influenced by pre-existing faults, shear fractures, and foliations, and potentially in one swarm where both NE-and lesser W-NW-striking dikes are present, by a switch in principal stress axes induced by dike emplacement. Alternatively, the W-NW- to NW-striking dikes may reflect a younger regional strain field, as ca. 49.3-47.5 Ma U-Pb zircon ages of the NE-striking dikes are older than those of the few dated W-NW- to NW-trending dikes. In one scenario, NE-striking dikes intruded during an interval when strain mainly reflected dextral strike-slip faulting, and the younger dikes record a switch to more arc-normal extension. Diking ended as magmatism migrated into a N-S-trending belt west of the North Cascades core that marks the initiation of the ancestral Cascade arc
Cardiovascular Effects in Childhood Cancer Survivors Treated with Anthracyclines
Anthracyclines are commonly used to treat childhood leukemias and lymphomas, as well as other malignancies, leading to a growing population of long-term childhood cancer survivors. However, their use is limited by cardiotoxicity, increasing survivors' vulnerability to treatment-related complications that can markedly affect their quality of life. Survivors are more likely to suffer from heart failure, coronary artery disease, and cerebrovascular accidents compared to the general population. The specific mechanisms of anthracycline cardiotoxicity are complex and remain unclear. Hence, determining the factors that may increase susceptibility to cardiotoxicity is of great importance, as is monitoring patients during and after treatment. Additionally, treatment and prevention options, such as limiting cumulative dosage, liposomal anthracyclines, and dexrazoxane, continue to be explored. Here, we review the cardiovascular complications associated with the use of anthracyclines in treating malignancies in children and discuss methods for preventing, screening, and treating such complications in childhood cancer survivors
Nucleation versus Spinodal decomposition in a first order quark hadron phase transition
We investigate the scenario of homogeneous nucleation for a first order
quark-hadron phase transition in a rapidly expanding background of quark gluon
plasma. Using an improved preexponential factor for homogeneous nucleation
rate, we solve a set of coupled equations to study the hadronization and the
hydrodynamical evolution of the matter. It is found that significant
supercooling is possible before hadronization begins. This study also suggests
that spinodal decomposition competes with nucleation and may provide an
alternative mechanism for phase conversion particularly if the transition is
strong enough and the medium is nonviscous. For weak enough transition, the
phase conversion may still proceed via homogeneous nucleation.Comment: LaTeX, 10 pages with 7 Postscript figures, more discussions and
referencese added, typos correcte
Color Transparency Effects in Electron Deuteron Interactions at Intermediate Q^2
High momentum transfer electrodisintegration of polarized and unpolarized
deuterium targets, is studied. We show that the importance of final
state interactions-FSI, occuring when a knocked out nucleon interacts with the
other nucleon, depends strongly on the momentum of the spectator nucleon. In
particular, these FSI occur when the essential contributions to the scattering
amplitude arise from internucleon distances . But the absorption
of the high momentum may produce a point like configuration, which
evolves with time. In this case, the final state interactions probe the point
like configuration at the early stage of its evolution. The result is that
significant color transparency effects, which can either enhance or suppress
computed cross sections, are predicted to occur for .Comment: 37 pages LaTex, 12 uuencoded PostScript Figures as separate file, to
be published in Z.Phys.
Photoionising feedback in star cluster formation
We present the first ever hydrodynamic calculations of star cluster formation
that incorporate the effect of feedback from ionising radiation. In our
simulations, the ionising source forms in the cluster core at the intersection
of several dense filaments of inflowing gas. We show that these filaments
collimate ionised outflows and suggest such an environmental origin for at
least some observed outflows in regions of massive star formation. Our
simulations show both positive feedback (i.e. promotion of star formation in
neutral gas compressed by expanding HII regions) and negative feedback (i.e.
suppression of the accretion flow in to the central regions). We show that the
volume filling factor of ionised gas is very different in our simulations than
would result from the case where the central source interacted with an
azimuthally smoothed gas density distribution. As expected, gas density is the
key parameter in determining whether clusters are unbound by photoionising
radiation. Nevertheless, we find - on account of the acceleration of a small
fraction of the gas to high velocities in the outflows - that the deposition in
the gas of an energy that exceeds the binding energy of the cluster is not a
sufficient criterion for unbinding the bulk of the cluster mass.Comment: 16 pages, 21 figures, LaTeX. Accepted for publication in MNRA
Photoionising feedback and the star formation rates in galaxies
J. M. MacLachlan, I. A. Bonnell, K. Wood, and J. E. Dale, âPhotoionising feedback and the star formation rates in galaxiesâ, Astronomy & Astrophysics, Vol. 573, January 2015. This version of record is available online at: https://www.aanda.org/articles/aa/abs/2015/01/aa22250-13/aa22250-13.html Reproduced with Permission from Astronomy and Astrophysics, © ESO 2015.Aims. We investigate the effects of ionising photons on accretion and stellar mass growth in a young star forming region, using a Monte Carlo radiation transfer code coupled to a smoothed particle hydrodynamics (SPH) simulation. Methods. We introduce the framework with which we correct stellar cluster masses for the effects of photoionising (PI) feedback and compare to the results of a full ionisation hydrodynamics code. Results. We present results of our simulations of star formation in the spiral arm of a disk galaxy, including the effects of photoionising radiation from high mass stars. We find that PI feedback reduces the total mass accreted onto stellar clusters by â23% over the course of the simulation and reduces the number of high mass clusters, as well as the maximum mass attained by a stellar cluster. Mean star formation rates (SFRs) drop from SFRcontrol = 4.2 Ă 10-2 Mâ yr-1 to SFRMCPI = 3.2 Ă 10-2 Mâ yr-1 after the inclusion of PI feedback with a final instantaneous SFR reduction of 62%. The overall cluster mass distribution appears to be affected little by PI feedback. Conclusions. We compare our results to the observed extra-galactic Schmidt-Kennicutt relation and the observed properties of local star forming regions in the Milky Way and find that internal photoionising (PI) feedback is unlikely to reduce SFRs by more than a factor of â2 and thus may play only a minor role in regulating star formation.Peer reviewe
Bose-Einstein Correlations of Three Charged Pions in Hadronic Z^0 Decays
Bose-Einstein Correlations (BEC) of three identical charged pions were
studied in 4 x 10^6 hadronic Z^0 decays recorded with the OPAL detector at LEP.
The genuine three-pion correlations, corrected for the Coulomb effect, were
separated from the known two-pion correlations by a new subtraction procedure.
A significant genuine three-pion BEC enhancement near threshold was observed
having an emitter source radius of r_3 = 0.580 +/- 0.004 (stat.) +/- 0.029
(syst.) fm and a strength of \lambda_3 = 0.504 +/- 0.010 (stat.) +/- 0.041
(syst.). The Coulomb correction was found to increase the \lambda_3 value by
\~9% and to reduce r_3 by ~6%. The measured \lambda_3 corresponds to a value of
0.707 +/- 0.014 (stat.) +/- 0.078 (syst.) when one takes into account the
three-pion sample purity. A relation between the two-pion and the three-pion
source parameters is discussed.Comment: 19 pages, LaTeX, 5 eps figures included, accepted by Eur. Phys. J.
Search for Third Generation Vector Leptoquarks in p anti-p Collisions at sqrt(s) = 1.96 TeV
We describe a search for a third generation vector leptoquark (VLQ3) that
decays to a b quark and tau lepton using the CDF II detector and 322 pb^(-1) of
integrated luminosity from the Fermilab Tevatron. Vector leptoquarks have been
proposed in many extensions of the standard model (SM). Observing a number of
events in agreement with SM expectations, assuming Yang-Mills (minimal)
couplings, we obtain the most stringent upper limit on the VLQ3 pair production
cross section of 344 fb (493 fb) and lower limit on the VLQ3 mass of 317
GeV/c^2 (251 GeV/c^2) at 95% C.L.Comment: 7 pages, 2 figures, submitted to PR
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
Swift follow-up observations of candidate gravitational-wave transient events
We present the first multi-wavelength follow-up observations of two candidate
gravitational-wave (GW) transient events recorded by LIGO and Virgo in their
2009-2010 science run. The events were selected with low latency by the network
of GW detectors and their candidate sky locations were observed by the Swift
observatory. Image transient detection was used to analyze the collected
electromagnetic data, which were found to be consistent with background.
Off-line analysis of the GW data alone has also established that the selected
GW events show no evidence of an astrophysical origin; one of them is
consistent with background and the other one was a test, part of a "blind
injection challenge". With this work we demonstrate the feasibility of rapid
follow-ups of GW transients and establish the sensitivity improvement joint
electromagnetic and GW observations could bring. This is a first step toward an
electromagnetic follow-up program in the regime of routine detections with the
advanced GW instruments expected within this decade. In that regime
multi-wavelength observations will play a significant role in completing the
astrophysical identification of GW sources. We present the methods and results
from this first combined analysis and discuss its implications in terms of
sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25,
published 2012 November 21, in ApJS, 203, 28 (
http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables;
LIGO-P1100038; Science summary at
http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003
- âŠ