352 research outputs found

    The tone range/telemetry interferometer tracking system for support of sounding rocket payloads

    Get PDF
    Combined range rate and telemetric interferometer system for radar tracking of scientific sounding rocket

    The Olive Ridley Project (ORP): A successful example of how to engage researchers, conservation practitioners and civil society

    Get PDF
    The Olive Ridley Project (ORP) was set up to protect sea turtles and their habitats. The project was formed in 2013, and it became a registered charity in the UK in 2016. From its inception, ORP took a multidisciplinary approach to achieve its goals. Part of its objectives, and the reason why the charity came to fruition, are related to the issue of olive ridley sea turtle (Lepidochelys olivacea) entanglement in abandoned, lost or discarded fishing gear (also known as ‘ghost gear’ or ‘ghost nets’), and the search for ghost gear and turtle entanglement ‘hot spots’ throughout the Indian Ocean. The initial ORP research questions were soon challenged by societal interests to develop inclusive educational programmes in local communities and tourist resorts that could raise awareness about the need for conservation of all sea turtle species. In February 2017, ORP opened the first veterinarian-run, fully equipped Marine Turtle Rescue Centre in the Maldives, bringing together the work of researchers, citizen scientists, volunteers, environmentalists, marine biologists and veterinarians. The present work of ORP sits on a strong and scientifically robust collaborative plan. Current ORP research projects range from sea turtle population analyses, spatial ecology, rehabilitation of injured and sick individuals, epibiont parasite analyses, precise turtle identification through photo-ID research, linking ghost gear to responsible fisheries, and analyses of ghost gear drift patterns. The programme enhances community education and outreach by engaging schoolchildren, organizing workshops, promoting sustainable use of ghost gear waste, and training citizen scientists and local fishing communities. The ORP programme encompasses many principles of research engagement, effectively combining scientific knowledge, education and action. This article explores all stages of the process (from research planning and design, to knowledge exchange and inter- and trans-disciplinary impact assessments), describing the active engagement originated by the ORP initiative. A reflective insight into the learning, enrichment and challenges of engaging researchers and community actors is also included, considering the current social and scientific framework

    Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices

    Get PDF
    H2O is the most abundant component of astrophysical ices. In most lines of sight it is not possible to fit both the H2O 3 um stretching, the 6 um bending and the 13 um libration band intensities with a single pure H2O spectrum. Recent Spitzer observations have revealed CO2 ice in high abundances and it has been suggested that CO2 mixed into H2O ice can affect relative strengths of the 3 um and 6 um bands. We used laboratory infrared transmission spectroscopy of H2O:CO2 ice mixtures to investigate the effects of CO2 on H2O ice spectral features at 15-135 K. We find that the H2O peak profiles and band strengths are significantly different in H2O:CO2 ice mixtures compared to pure H2O ice. In all H2O:CO2 mixtures, a strong free-OH stretching band appears around 2.73 um, which can be used to put an upper limit on the CO2 concentration in the H2O ice. The H2O bending mode profile also changes drastically with CO2 concentration; the broad pure H2O band gives way to two narrow bands as the CO2 concentration is increased. This makes it crucial to constrain the environment of H2O ice to enable correct assignments of other species contributing to the interstellar 6 um absorption band. The amount of CO2 present in the H2O ice of B5:IRS1 is estimated by simultaneously comparing the H2O stretching and bending regions and the CO2 bending mode to laboratory spectra of H2O, CO2, H2O:CO2 and HCOOH.Comment: 12 pages, 11 figures, accepted by A&

    Bipolaron Binding in Quantum Wires

    Get PDF
    A theory of bipolaron states in quantum wires with a parabolic potential well is developed applying the Feynman variational principle. The basic parameters of the bipolaron ground state (the binding energy, the number of phonons in the bipolaron cloud, the effective mass, and the bipolaron radius) are studied as a function of sizes of the potential well. Two cases are considered in detail: a cylindrical quantum wire and a planar quantum wire. Analytical expressions for the bipolaron parameters are obtained at large and small sizes of the quantum well. It is shown that at R1R\gg 1 [where RR means the radius (halfwidth) of a cylindrical (planar) quantum wire, expressed in Feynman units], the influence of confinement on the bipolaron binding energy is described by the function 1/R2\sim 1/R^{2} for both cases, while at small sizes this influence is different in each case. In quantum wires, the bipolaron binding energy W(R)W(R) increases logarithmically with decreasing radius. The shapes and the sizes of a nanostructure, which are favorable for observation of stable bipolaron states, are determined.Comment: 17 pages, 6 figures, E-mail addresses: [email protected]; [email protected]

    The Spitzer View of Low-Metallicity Star Formation: III. Fine Structure Lines, Aromatic Features, and Molecules

    Full text link
    We present low- and high-resolution Spitzer/IRS spectra, supplemented by IRAC and MIPS measurements, of 22 blue compact dwarf (BCD) galaxies. The BCD sample spans a wide range in oxygen abundance [12+Log(O/H) between 7.4 and 8.3], and hardness of the interstellar radiation field (ISRF). The IRS spectra provide us with a rich set of diagnostics to probe the physics of star and dust formation in very low-metallicity environments. We find that metal-poor BCDs have harder ionizing radiation than metal-rich galaxies: [OIV] emission is roughly 4 times as common as [FeII] emission. They also have a more intense ISRF, as indicated by the 71 to 160micron luminosity ratio. Two-thirds of the sample (15 BCDs) show PAH features, although the fraction of PAH emission normalized to the total infrared (IR) luminosity is considerably smaller in metal-poor BCDs (~0.5%) than in metal-rich star-forming galaxies (~10%). We find several lines of evidence for a deficit of small PAH carriers at low metallicity, and attribute this to destruction by a hard, intense ISRF, only indirectly linked to metal abundance. Our IRS spectra reveal a variety of H2 rotational lines, and more than a third of the objects in our sample (8 BCDs) have >=3sigma detections in one or more of the four lowest-order transitions. The warm gas masses in the BCDs range from 10^3 to 10^8 Msun, and can be comparable to the neutral hydrogen gas mass; relative to their total IR luminosities, some BCDs contain more H2 than SINGS galaxies.Comment: Accepted by ApJ: 70 pages in draft form, 6 tables, 22 figure

    AKARI observations of ice absorption bands towards edge-on young stellar objects

    Get PDF
    To investigate the composition and evolution of circumstellar ice around low-mass young stellar objects (YSOs), we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. We performed slit-less spectroscopic observations using the grism mode of the InfraRed Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 mu m to 5 mu m, including the CO2 band and the blue wing of the H2O band, which are inaccessible from the ground. We developed procedures to carefully process the spectra of targets with nebulosity. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS 04302), absorption bands of H2O, CO2, CO, and XCN are clearly detected. Column density ratios of CO2 ice and CO ice relative to H2O ice are 21-28% and 13-46%, respectively. If XCN is OCN-, its column density is as high as 2-6% relative to H2O ice. The HDO ice feature at 4.1 mu m is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 mu m provide upper limits to the CH3OH abundance of 26% (L1527) and 42% (IRAS 04302) relative to H2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN-could originate in the region close to the protostar, where there are warm temperatures and UV radiation. We detect H2O ice band towards ASR41 and 2MASSJ 1628137-243139, which are edge-on class II disks. We also detect H2O ice and CO2 ice towards HV Tau, HK Tau, and UY Aur, and tentatively detect CO gas features towards HK Tau and UY Aur

    ISOCAM view of the starburst galaxies M82, NGC253, and NGC1808

    Get PDF
    We present results of mid-infrared 5.0-16.5 micron spectrophotometric imaging of the starburst galaxies M82, NGC253, and NGC1808 from the ISOCAM instrument on board the Infrared Space Observatory. The mid-infrared spectra of the three galaxies are very similar in terms of features present. The > 11 micron continuum attributed to very small dust grains (VSGs) exhibits a large spread in intensity relative to the short-wavelength emission. We find that the 15 micron dust continuum flux density correlates well with the fine-structure [ArII] 6.99 micron line flux and thus provides a good quantitative indicator of the level of star formation activity. By contrast, the 5-11 micron region dominated by emission from polycyclic aromatic hydrocarbons (PAHs) has a nearly invariant shape. Variations in the relative intensities of the PAH features are nevertheless observed, at the 20%-100% level. We illustrate extinction effects on the shape of the mid-infrared spectrum of obscured starbursts, emphasizing the differences depending on the applicable extinction law and the consequences for the interpretation of PAH ratios and extinction estimates. The relative spatial distributions of the PAH, VSG, and [ArII] 6.99 micron emission between the three galaxies exhibit remarkable differences. The < 1 kpc size of the mid-infrared source is much smaller than the optical extent of our sample galaxies and 70%-100% of the IRAS 12 micron flux is recovered within the ISOCAM < 1.5 arcmin squared field of view, indicating that the nuclear starburst dominates the total mid-infrared emission while diffuse light from quiescent disk star formation contributes little.Comment: 25 pages, 12 figures, accepted for publication in Astronomy and Astrophysics; Figs. 3, 4, 5, 6, 7, 9, 10, 12 appear after Sect.

    Photodesorption of ices I: CO, N2 and CO2

    Full text link
    A longstanding problem in astrochemistry is how molecules can be maintained in the gas phase in dense inter- and circumstellar regions. Photodesorption is a non-thermal desorption mechanism, which may explain the small amounts of observed cold gas in cloud cores and disk mid-planes. This paper aims to determine the UV photodesorption yields and to constrain the photodesorption mechanisms of three astrochemically relevant ices: CO, N2 and CO2. In addition, the possibility of co-desorption in mixed and layered CO:N2 ices is explored. The ice photodesorption is studied experimentally under ultra high vacuum conditions and at 15-60 K using a hydrogen discharge lamp (7-10.5 eV). The ice desorption during irradiation is monitored by reflection absorption infrared spectroscopy of the ice and simultaneous mass spectrometry of the desorbed molecules. Both the UV photodesorption yields per incident photon and the photodesorption mechanisms are molecule specific. CO photodesorbs without dissociation from the surface layer of the ice. N2, which lacks an electronic transition in this wavelength range, has a photodesorption yield that is more than an order of magnitude lower. This yield increases significantly due to co-desorption when N2 is mixed in with or layered on top of CO ice. CO2 photodesorbs through dissociation and subsequent recombination from the top 10 layers of the ice. At low temperatures (15-18 K) the derived photodesorption yields are 2.7x10^-3 and <2x10^-4 molecules photon-1 for pure CO and N2, respectively. The CO2 photodesorption yield is 1.2x10^-3x(1-e^(-X/2.9)) + 1.1x10^-3x(1-e^(-X/4.6)) molecules photon-1, where X is the ice thickness in monolayers and the two parts of the expression represent a CO2 and CO photodesorption pathway.Comment: Accepted by A&A; the new version contains additional figures and text at the referee's reques
    corecore