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A theory of bipolaron states in quantum wires with a parabolic potential well is developed applying the
Feynman variational principle. The basic parameters of the bipolaron groundsiateinding energy, the
number of phonons in the bipolaron cloud, the effective mass, and the bipolaron) racBustudied as a
function of sizes of the potential well. Two cases are considered in detail: a cylindrical quantum wire and a
planar quantum wire. Analytical expressions for the bipolaron parameters are obtained at large and small sizes
of the quantum well. It is shown that B&1 [whereR means the radiugalf width) of a cylindrical (planay
quantum wire, expressed in Feynman upitie influence of confinement on the bipolaron binding energy is
described by the functior 1/R? for both cases, while at small sizes this influence is different in each case. In
guantum wires, the bipolaron binding energy(R) increases logarithmically with decreasing radius. The
shapes and the sizes of a nanostructure, which are favorable for observation of stable bipolaron states, are
determined.

[. INTRODUCTION the polaron radius, the bipolaron can be stableatl and
7n<1. When two electrons are together confined to a poten-
Landau’s idehof the autolocalized state of a charge car-tial well, one can expect that the conditions of the bipolaron
rier (polaron in a homogeneous polar medium got a furtherstability may be improved for relevant sizes of the well.
development by Pekawho first studied a problem of a Two new circumstances have stimulated the bipolaron
stable complex of two charge carriers of the same ¢ theory: the progress in the fabrication technology of meso-
polaron. The bipolaron binding energy was first calculatedscopic nanostructures such as quasi{2bere 2D denotes
in Ref. 3. The bipolaron problem was widely discussed, seéwo dimensiongl (quantum wells and superlattioes
e.g., Refs. 4-9. A detailed outline of this subject is presentedquasi-1D(quantum wires quasi-OD(quantum dots and the
in a recent review® advancement of the hypothesis that bipolaron excitations
Dimensionless constants of the Coulomb interactibn might play a role in processes occurring in the high-
and of the electron-phonon interactianare related to each temperature superconductors. The present research has been

other by the equatidfi motivated also by the recent advances in creation of nano-
crystals with a strong ionic coupling.
V2o The basic bipolaron parameters are recalled in what fol-
U:rn, 1) lows. The bipolaron stability region is determined by the

inequality W>0 for the bipolaron binding energy
wherenp=¢,/eq (g9 ande,, are static and optical dielectric
constants, respectivelyDue to the fact thaky>¢.., the W=2E,~ Epjp. 2
relationU= /2« follows. When the distancebetween elec-
trons is large or small compared with the characteristic po
laron radiusR, (see Ref. 1], the phonon-mediated attraction
betwee.n electrons occurs t-o be We_zaker than. the repuls!on. At W(a,7,R)=0, 3
large distancet>R,, both interaction potentials have simi-
lar spatial dependences but the Coulomb repulsion is strorwhereR denotes the set of parameters determining the shape
ger than the phonon-mediated attraction. In the oppositand the size of the confinement domain, the functions
casel <R, the Coulomb potential diverges at the zero dis-a.(#7,R) and n.(«,R) describing the boundaries of the bi-
tance, while the phonon-mediated attraction is always finitepolaron stability region are found, for fixegland «, respec-
Nevertheless, when two electrons move in such a way thatvely. According to different theoretical treatmeht¥ the
the average distance between them is of the same order bgpolaron binding energy is an increasing functionaofind

Here E, and E, are the free polaron and bipolaron ground
State energies, respectively. From the equation
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a decreasing function af. It will be shown that the function
nc(@,R) starts from»n.=0 at «= ay,n(R)#0, grows with
increasingy, and tends to the upper limif,,, at a—. The
bipolaron stability region is then determined by the inequali-
ties = ayn(R) and 0= n<n(a,R).

Let us adduce typical values of the parametefs, 3p and
7max3p Of the bulk (3D) bipolaron: ap,3p=6.8 and
7max3o—0.14 were found by Verbist, Peeters, and
DevreesE* and by Verbist, Smondyrev, Peeters, and
Devreesa® Adamowskl obtainedamn 3p= 7.3 and 7max3p FIG. 1. A scheme of the trial system which contains two elec-
=0.14. The bipolaron theory developed for pure dRefs.  trons connected with two “fictitious” particles through the elastic
16 and 17 and 1BRef. 17 models shows that the bipolaron attraction and models the Coulomb interaction by the elastic repul-
stability region broadens when the dimensionality is reducedson-

For these systems, the following parameters were obtained:
Uin20=2.9, Tmax2o=0.158 (Ref. 16; amin1p=0.9, wires, respectively. Amplitudes of the electron-phonon inter-

Imax1c=0.764(Ref. 18. Bipolaron states were investigated action are taken in the Fitich form:

in a quantum wel?°and in a quantum wirfé as a function " 14
of the characteristic size of the system. The polaron theory (12=2 2mhwoa @o h exp(ikr), (5)
for a quantum dot is developed in Refs. 22-25. Yk \% k zﬁwo '

The goal of the present investigation is to determine the .
bipolaron stability region and to study the basic parameterssherem=(m;m,m5)*3, V is the volume of the system, and
characterizing the bipolaron ground state as a function ofhe Frdilich constant
confinement. Two different types of confinement are consid-
ered and compared to each oth@j:a cylindrical quantum e (1 1\/2mwe|™?
wire of the radiuRR, where continuous transitions from 3D to a= 2ﬁw0< 8—0) 7
1D are realized with decreasifRj (ii) a planar quantum wire
of the widthL, where a transition from 2D to 1D is realized characterizes the strength of the coupling between an elec-
with decreasind-. A unique approach, namely the Feynmantron and bulk polar LO phonons with the long-wavelength
variational method®?’is used throughout the paper for both frequencyw. In this paper, the 3D phonon approximation is
systems under analysis. used, according to which the interaction of an electron with
The paper is organized as follows. In Sec. I, general forboth bulklike and interface phonons is replaced by that with
mulas for parameters of a bipolaron in quantum wires are8D phonons. This often used approach is adequate because
deduced. In Sec. Ill, particular cases of cylindrical and planaany integral polaron or bipolaron effect, resulting from a
quantum wires are considered. The basic parameters of tlimmation over all phonon modes, appears to be only
bipolaron ground state are obtained. Limiting cases of strongveakly dependent on the details of the phonon spectrum. It
and weak confinement are studied in detail. The obtaineghould be also mentioned that the system under consider-
numerical and analytical results are discussed in Sec. IVation simulates realistic structures with relatively smooth in-
Section V contains conclusions about the influence of conterface barriers, where interfacelike phonon modes can ap-
finement on the bipolaron binding energy in quantum wirespear, which are smoothly distributed in space rather than
localized near a sharp boundary, as is the case for interface
modes.
In order to study the bipolaron problem at arbitrary values
We analyze the bipolaron problem taking into accountof @, the Feynman variational appro&tiis the most appro-
both the electron-phonon interaction and the Coulomb repulpriate method. The trial Lagrange function is written as
sion between two electrons confined to a quantum wire. The

(6)

€

Il. GENERAL THEORY

Lagrange function of the system is .
g g Y Izl nz [mxl n—HvI XZn_ki(Xi,n_xi,n)2
. D mix?, S e?
= — r B —— ,
i=1n=1.2 2 n=1,2 n 8w|r1_r2| _ki (Xi,n_xiyﬁ)z]‘f'igl Ki(Xil_Xiz)z_n;:LZW(rn),
1
T3 2 (Wmwtw)— 2 X nrwe, (@) 0

where X;, are coordinates of thath “fictitious” particle

(n=1,2). This model imitates the interaction of electrons

tron (n=1,2): m, is the ith component i(=1,2,3) of the with phonons and between each other by elastic bonds as
il il | 16

diagonal band mass tensi(r) is the potential energy of an SMOWN in Fig. 1. The massés; and the force constanks,
electron in the quantum wire, avg, are the normal coordi- Ki . Ki play the role of variational parameters. For1, n
nates of longitudinal opticalLO) phonon modes. Here, the takes the value 2, and for=2, n is equal to 1. The potential
parameterD determines the dimensionality of the electronwell 2/(r) from Eq.(4) is simulated here by a parabolic func-
subsystemD =3 and 2 for cylindrical and planar quantum tion:

wherer,(Xq,,X2n,X3,) IS the radius vector of thath elec-



PRB 61 BIPOLARON BINDING IN QUANTUM WIRES 2723

1 : S_Str
W(N =5 2 mOix;. ®) Epip=Eyr— lim ﬂ,

> Im — (1D

The indexq characterizes the dimensionality of confinement ) ) )
and is determined as follows: for a planar quantum wgre whereE,, is the ground state energy of the trial system with

—1 (Q,#0 andQ,=0) and for a cylindrical quantum wire the Lagrangian(7), B=1/kgT is the inverse temperature.

9=2 (Q,#0, Q,#0, andQ3=0). The trial Lagrange functioki7) consists oD independent

The basis of the Feynman variational method is theP@rts:Ly == ,L;. Each part; is a function of four vari-
Jensen-Feynman inequaﬁfy ablesx;q, X2, Xj1, Xj2. Let us introduce unified denotations
for coordinates of electrons and of “fictitious” particles:

(exp(S—Sy))s, = exp(S—Sy)s, » Q) Ri1=Xi1, Xia=Xi2, Xia=Xi1, Xia=Xio. It follows from the

where the angular brackets denote averaging over electrofrqrm of the trial Lagrangiari7) with Eq. (8) that the groups

paths: of variable&ij with different indices are dynamically inde-
pendent from each other. They are related to normal vari-
ablesé;; by the unitary transformation:

TrJ DrG[rlexpS;,)

(G)s, = (10 o
Trf DreXF(S”) Xij: 2 di,jj'éij’! |:1,,D (12)
i'=1
Here Sand S;, are the electron action functionals obtained ] o,
after integration over phonon variables and over coordinate¥ith 4> 4 matrices|d; ;|| (j,j"=1, ... ,4).From the equa-
of “fictitious™ particles, respectively. At low temperatures, tions of motion for the group of coordinates;; (j
the variational bipolaron energy is calculated using the ex=1, ... ,4)with a fixedi, the following eigenfrequencies are

pression obtained:

vi+Q2—(-1) \/{(1— %)vf—ﬂf

2

il J 149

, 1™,

1 - K; . M, K12 (ki—k/)?
2__ e+t _(— J\/ 2024021t R R i =
wj=5 1+ m vi+Q; 2mi (-1 [(1 mi>v, Q,-i—Zmi +4 M| ]=34, (13
|
where vi2=(ki+ki’)/Mi. Matrix elements of the unitary j=1 and 3 corresponding to the motion of the bipolaron
transformation(12) are along this axis as a whole are determined mainly by the
parameteK); .
w2 —y?2 vZ— w2 The action functional$ andS;; in Egs.(9)—(11) contain
dﬁll:%, 512:'2—'22, the potential energies/ and WV, respectively. Though the
2(wj;~ wip) 2(wj1~ wip) shape of a real potentizd may differ from that of the model
quadratic potential8), the averaged differenc@/(—W)s,
) wi—V? ) vi—w? can be omitted as far as it is small when compared to the rest
A= 5 14~ 57 2 2. of (S— /B.
I Z(wizs_wiz4) I 2(‘l’izr-s_wi24) < SU>S” '8 . . .
The averaging procedure in E@.1) is carried out by the
path integration and leads to the following form of the varia-
ki+sj ki tional bipolaron energy:
d' 'I:S'/d‘ ‘!, d = (5 H '!,
i,2] YL i,3 Mi(Viz_wizjr) i,1j b
Epip=>, Bi+C+P. (15)
=1
di,4j’:Sj’di,3j’ s (14) !

Here the termsB; include the averaged kinetic energies of
si=1 (j=12, s=-1 (j=34. two electrons and of two “fictitious” particles as well as the
averaged potential energy of the elastic interaction of these

Note that the elastic repulsion imitating the Coulomb in—four particles:

teraction gives a contribution to the eigenfrequencies \vith 1.4 2_ 2
=3 and 4 through the force constars. It is easy to see B=— >, | 1- T2 —v,, i=1,...D.
from Eq. (13) that under the conditions of a strong confine- 2]

ment along theth coordinate axis the eigenfrequencies with (16
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In Egs.(15) and(16) and further on, the Feynman urfftare

used:f w, for energiesiw, for frequencies; andi(/mwg)/?
for lengths.

The averaged potential energy of the Coulomb electron
repulsion is

o
- 1
C= ka0, 17

and the averaged energy of the electron-phonon interaction is FIG. 2. A scheme of cylindricala) and planar(b) quantum

wires.
p—_ ﬁz > f“dTe—T,Cn(T), (19) IIl. BIPOLARON IN CYLINDRICAL
T n=12Jo AND PLANAR QUANTUM WIRES
where A. Variational problem
Here we write down the variational bipolaron energies in
© 1 D D the cylindrical and planar quantum wirésee Fig. 2. Here-
/Cn(q-):j —2ex;{ — E kizAin(T) H dk.. (19 after, the following denotation for the confinement parameter
-2k i=1 i=1 is used:Q;=Q, , i=1,9. The electron mass is taken to be
_ _ isotropic, i.e.,m;=my,=mz=m. From Egs.(15-(18) we
The functionsA;,(7) are determined as follows: obtain the variational bipolaron energy
m dﬁlj o Epp=B, +Bj+C+P, (24
An(m) =0 J':El‘z w—ij(l—e ) where, in accordance with E¢L6),
d?y, 1
+j_234w—'”[1+(—1)ne_“’ij7]), n=1,2. (20 BH:EZ w\lj(l_dzD,lj)_VH’ (25
), ] j=1
In order to find the bipolaron energy, it is necessary to mini- q 4 w2 —02
mize the functionE, given by Eq.(15) over twelve inde- BL=§ E w | 1- %di” —-2v,|. (26
pendent variational parametersv;;, i=1,...,3, ] =1 Wy
=1, ...,4, which are used instead of the maddesnd the

Here the frequencies of the motion along thexis (called

!
force constants;, ki , K;. below the longitudinal motionare

From Eq.(13) for the eigenfrequencies, the expression for

components of the diagonal tensor of relative bipolaron ef- wp1= 0 0p,=0, wpj=w|;, =34, (27)
fective mass is deduced straightforwardly:
2 2 2 VDEVH
Msz(&+ 1) _ 2ot o ) . (21 and those of the motion in they plane(the transverse mo-
m; m; v2 tion) are
where the values of parametess, , w;,, v; are taken which wj=w, j=1,...4, vi=v, (28)

provide the bipolaron energy. L _ . _
The number of phonons in the bipolaron cloud is deter-WIth 1=12forq=2 andi=1 for g=1. In the case under

mined by the general expression of Ref. 11 consideration, the integrations containing the funcfytr)
' are performed analytically. The calculation of the integrals in

Eqgs.(17) and(18) yields the averaged potential energy of the
_ IS Coulomb repulsion between electrons
ph™ ’ (22)
I(hwg) 5

R (1 AMO))

which gives in the case under consideration: €= ‘/WA\\z(O) Fo[ 1~ Aj2(0)

(29

and the averaged energy of the electron-phonon interaction

@ * .
Nphzﬁn;zfo Ko(r)e~rdr. (23 2y fwd o F(l Am<r>)
= — — e T T A )

\/;nzl,z 0 T \/AHn(T) a AHH(T) ,

Calculations of the average number of phonons according to (30)
Eq. (23) are performed using the results of minimization of
the bipolaron energy. where
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R 08

0.4

0.0
01 05 09 13 1.7
L2

0.0
01 03 05 07 09
R

FIG. 3. The bipolaron binding energ¥ in cylindrical (a) and
planar(b) quantum wires plotted versus the dimensionless radius
and widthL, respectively.

2
Up,y

AHn(T)— > [14+(—1)"e “li]
=24 0|
d2
+ 21— enn)+d 7,
@1
df
An(r)= 2 —=(1-e ")
j=1,2 wi]
d? .
+ > A1+ (-1 w7, n=12,
j=34 W] j
tanh 1/x
- = q:21
Jx
Fq(X)= (31)
J‘wlz do
- qg=1.
o (1—xsirtg)? .

The minimization of the variational bipolaron energy;,
determined by Eqs24)—(31) is carried out with respect to
eight variational parameters|, @, ,, wj,0,; (j=1,3,4).
Settingk{ andK; equal to zero in these formulas, the twice
value of the polaron energyis obtained from Eq(24). The
binding energy is then found according to E2). Results of
the calculation ofV as a function of the quantum wire radius
=0, 2 are presented in Fig. 3 for different values @f
Then the functionsani(R)=a.(7=0R) (Fig. 4 and

0
10 0.001 0.01 0.1
L2

0
0.001 0.01 0.1
R

1 1 10

FIG. 4. The minimal valugat »=0) of the critical electron-
phonon coupling constant, plotted versusR andL in cylindrical
(a) and planar(b) quantum wires, respectively.
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145 |
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140} A
sl
0 4 8§ 12 16 28
R

FIG. 5. The ratio of the critical Coulomb repulsion constait
and a, as a function ofe, in cylindrical quantum wires foR
=0.01(1), 0.5(2), 1.0(3), and 20.0(4).

7:(R,a) are obtained. The latter function is used for calcu-
lation of the critical value of the Coulomb repulsion constant
U.(a) in order to describe the bipolaron stability region
shown in Fig. 5. From Eq21), taking into account Eq27),
the relative bipolaron effective mass of the longitudinal mo-
tion is derived as

(Mpip)| Ziﬁl

—

(32
2

Vi
Plots of the relative bipolaron mass as a functionRoére

shown in Fig. 6. A detailed discussion of the results will be
given in Sec. IV.

B. Weak size quantization

For a weak size quantization, the eigenfrequencies of the
transverse motion can be represented as expansion series in
Q, . In these series, we take into account only the two first
terms:

w? =+ 02 2 o0,
wfy
2
w?,= 92 +0(Q4)
w
1
ﬁs I
wi3_wﬁ3+ﬂf 2 2 +O(Qj),
w w
37 “la
| f4
0l 4= 0fy+ 02 ——>=+0(0}) (33
w w
37 “la
As a consequence, E(R6) takes on the form
2 .2
Vi @iV 2
B, =q BH_"QL 5 +O(QL), (34)
4w|| le

and the parameters on the right-hand side of(B6) satisfy
the relations



2726

(7}

[y
<

(Mip)  /m
(Moip)  /m

10 1 1 1 1
0.1 05 09 1.3 1.7
L2

01 03 05 0.7 09
R

FIG. 6. The bipolaron effective massg,);/m in cylindrical
(a) and planar(b) quantum wires plotted versu® and L, respec-

tively. The curves for the effective mass are broken off as the bi- /(U) =

polaron becomes unstable.
1

An(T)=Ap(7)— ZQN

(39

Substituting the expressiof85) in Egs. (29) and (30), we
obtain the energy of the Coulomb repulsion

\/EU f1q
+O(Q ), (36
\/— VA|120)
and the energy of the electron-phonon interaction
3
_ 2_a E 7 flq + & TZﬂ qu
mn=i2 Jo VAR(T) 4 ofy VAR
+0(0%), (37)
where
1
1, gq=2 3 g=2
1:1q: z, q=1 f2q: -
2 g, gq= 1

The bipolaron energy in this limiting case can be repre-

sented as

Epip=Eppp+ AEpip+O(Q?),

POKATILOV, FOMIN, DEVREESE, BALABAN, AND KLIMIN
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It is worth mentioning, that in the strong coupling regime,
the integrals in Eq(38) are calculated analytically, and the
minimization of this variational function with respect to the
frequencies is performed explicitly. For this purpose we use
the results of Ref. 28, where the following analytical expres-

sions for frequencies are obtained”i:azz)i (for i=1,3),

(1)”421, VHIl, where
~ 128 [1-4U)]* . 128 R,
wl_G‘gDW1 wz=g—0p[1=L(U)J,
(39
u 1 21112 1:3 , D=3
60 2|° \gal |+ 7 (TW) D=2.

Using these frequencies, we find the confinement-induced
shift of the bipolaron energy to be

AE & (40)

bip q 2a2;3 .
This result differs qualitatively from that deduced in Ref. 29
for a bipolaron in a weak magnetic field, where the cyclotron
frequencyw, plays the role of2. Namely, as distinct from
Eqg. (40), in the equation from Ref. 29 for the first-order
correction to the bipolaron energy’ stands instead of”.

It is important to note that this positive correction to the
bipolaron energy due to the confinement is less than twice
the value of the respective correction to the polaron engtgy.
The confinement-induced variation of the bipolaron binding
energy obeys the inequality

97 1

- =—|>0.

Q
AW= 2

2
21 %26,

(41)

Thus, the enhancement of the bipolaron binding takes place
due to the confinement.

C. Strong size quantization

In the limiting case of a strong size quantization, the
terms of the order of2? play a determining role in Ed15).
For the frequencies of the transverse motion, the expansion

where Egip is the bipolaron energy in three or two dimen- in inverse powers of)“ gives

sions for D=3 or D=2, respectively. The confinement-
induced shift of the bipolaron energyEy, is given by

AE. =0 V| 3wﬁ1—vf
bip— =41 q4_w3w—ﬁl

VH f dre
4of;

P——)]

AH11( 7)

+ (39

M,
0l =02+ —vL+O(Q 2, w?,=vi+0(Q?),

M K
w2 =0%+ Flvf—zﬁ—FO(QIz),

w?,=v2+0(Q?). (42)

Consequently, the bipolaron ground state energy is described
by the expression
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finement[cf. Egs.(24) to (30)].
Epip=0Q, + T+ ( O, A»(0) In Fig. 4, the minimal valuey,, is represented as a func-
27TA\|2(0 tion of R and L for cylindrical and planar quantum wires,
correspondingly. In the region of largeandL, the minimal
1 16 valuesay,, for cylindrical and planar quantum wires tend to
E — QA7 |- or cyll AT quantum wire
n=1,2 \/ Ajn(T ) q? the three-dimensional and two-dimensional limig, 3p

43) and ayin 2p» _respe(_:tive_ly. WherR andL decrease from 1.0
to 0.1, a rapid diminution ok, is seen. Note that at small
The first term on the right-hand side of Hg23) is the energy  values ofR,L (which are, however, still compatible with the
of two electrons in the parabolic potential. The last threecontinuum description the bipolaron stability region ex-
terms on the right-hand side of E¢43) are due to the tends to small values af. Note that the bipolaron param-
electron-phonon and Coulomb interactions. In the strongters for quantum wires obtained in the formal limiting cases
coupling reglmewu.— a? w| (i=1,3); w4 andv; are propor- R,L—0 differ substantially from those derived for the purely

tional to «° with coefficients which are functions @b, .  one-dimensional .mOdJegl (with 1D electrons and 1D
Then omitting the terms of the order ef in the last three  phonons, which givesapn 1p=0.9.
terms of the variational bipolaron ener¢43) we obtain In Fig. 5, the ratio of the critical value of the Coulomb

repulsion constant to the Hitich coupling constant,

Ua) 2

Wit ag u\/— 16 0,
Ebip=qﬂi+a 4 a\/_
2\/—( wlws )l/ZI
J

qawl

(45)

@ 1-7nc(a)
8 O, 1
o2 a? (;,1 ;3) 1 ] ' is plotted as a function o& for various radii(ranging from
0.01 to 20.0 of the cylindrical quantum wire. Since the pa-
(44) rameters, is non-negativel.(a)/a cannot be less than the
Note that the second term on the right-hand side of(84.  value \2 (shown by the lineA). When increasingy, the
is proportional toa?, as is expected in the strong coupling right-hand side of Eq(45) tends to the three-dimensional
regime. When replacing), —w. at q=2, this polaronic limit \2/(1— 7c3p), Marked by the lineB. The physical
term coincides with that of the bipolaron variational energysense of this trend consists in the following: when increasing
in a strong magnetic field from Ref. 29. The dependence othe electron-phonon coupling, the electron confinement to
the bipolaron binding energy on the cylindrical confinementthe parabolic potential(8) is gradually replaced by the con-
provides a possibility for a controllable enhancement of thedinement to thepolaronic potentialwell. The regions of bi-
bipolaron binding by decreasing the radius of a quantunpolaron stability can exist only between the lindsand B.
wire. The domain between a cunig,(a)/« and the lineA is the
SettingU =0 andw= w,= w3 in Eq. (44), one obtains the bipolaron stability.region.for_ a spgcific radius of the cylin-
twice variational polaron energyE2 with the variational ~drical quantum wire. This figure illustrates clearly an en-
parameteiw (see Ref. 25 The polaron energ¥, depends ![ﬁrgergent C}ft:]he blpotlaron .Staa\'"ty reglglon W'tc? dec[jeasmg f
on the confinement parameter similarlyig,. The binding he [;f‘ ”IJS orthe g_tlj_an um wire. hn an_z (;]gouks elpen fenCﬁ N
energyW (which is not written explicitly to save spaci- the bipolaron stability region on the width takes place for the

creases logarithmically with increasiify, . plan_ar guantum wire. -
Bipolaron effective masses are represented in Fig. 6 as a

function of the dimensionless sizBsandL of the cylindrical
and planar quantum wires. The size dependence of the bipo-
laron effective mass is qualitatively similar to that of the

Beyond the framework of the limiting cases which allow ground state energy but appears to be substantially more pro-
an analytical treatment as discussed above, the bipolaron staounced. At small radii (0£R<0.2), the bipolaron mass
bility is studied using the following computational proce- Strongly increases with decreasiRy
dure. First, we evaluate the bipolaron enefgy, and the
model bipolaron effective mass definedmg,=2 (M +m).
Second, the functiong,i,(R) and 7.(«,R) are found from
Eq.(3). The region of the Filalich coupling constant ranging
from 2 to 4 is chosen for the numerical work in order to  The conclusion of our analysis is that the confinement
include the values of corresponding to some specific sub- leads to arenlargement of the bipolaron stability region
stances with smally [for example, TiQ: «=2.03, »  cylindrical and planar quantum wires as compared to the
=0.035® TICI: «=2.56, »=0.1333' BaO: a=3.23, »  corresponding regions of infinite three-dimensional and two-
=0.118%° LiBr: a=4.15, =0.24 (Ref. 31)]. dimensional systems, respectively. lRr1 or L~1, the

Figure 3 illustrates the size dependence of the bipolarowritical valuesa,. required for bipolaron stability are close to
binding energy in cylindrical and planar quantum wires, forthose for TiQ, TICI, BaO, and LiBr. For example, according
a values corresponding to the above-mentioned substancés Fig. 4b), the bipolaron stability region sets in at the width
and for »=0. As seen from Fig. 3, the bipolaron binding L of the planar quantum wire of about 8 nm for parameters
energy monotonously rises with increasing transverse coref TICI. In this view, manifestations of the bipolaron phe-

(,()1+ (1)3

IV. DISCUSSION OF NUMERICAL RESULTS

V. CONCLUSIONS



2728 POKATILOV, FOMIN, DEVREESE, BALABAN, AND KLIMIN PRB 61
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