82 research outputs found
Genome-wide profiling of non-smoking-related lung cancer cells reveals common RB1 rearrangements associated with histopathologic transformation in EGFR-mutant tumors.
The etiology and the molecular basis of lung adenocarcinomas (LuADs) in nonsmokers are currently unknown. Furthermore, the scarcity of available primary cultures continues to hamper our biological understanding of non-smoking-related lung adenocarcinomas (NSK-LuADs).
We established patient-derived cancer cell (PDC) cultures from metastatic NSK-LuADs, including two pairs of matched EGFR-mutant PDCs before and after resistance to tyrosine kinase inhibitors (TKIs), and then performed whole-exome and RNA sequencing to delineate their genomic architecture. For validation, we analyzed independent cohorts of primary LuADs.
In addition to known non-smoker-associated alterations (e.g. RET, ALK, EGFR, and ERBB2), we discovered novel fusions and recurrently mutated genes, including ATF7IP, a regulator of gene expression, that was inactivated in 5% of primary LuAD cases. We also found germline mutations at dominant familiar-cancer genes, highlighting the importance of genetic predisposition in the origin of a subset of NSK-LuADs. Furthermore, there was an over-representation of inactivating alterations at RB1, mostly through complex intragenic rearrangements, in treatment-naive EGFR-mutant LuADs. Three EGFR-mutant and one EGFR-wild-type tumors acquired resistance to EGFR-TKIs and chemotherapy, respectively, and histology on re-biopsies revealed the development of small-cell lung cancer/squamous cell carcinoma (SCLC/LuSCC) transformation. These features were consistent with RB1 inactivation and acquired EGFR-T790M mutation or FGFR3-TACC3 fusion in EGFR-mutant tumors.
We found recurrent alterations in LuADs that deserve further exploration. Our work also demonstrates that a subset of NSK-LuADs arises within cancer-predisposition syndromes. The preferential occurrence of RB1 inactivation, via complex rearrangements, found in EGFR-mutant tumors appears to favor SCLC/LuSCC transformation under growth-inhibition pressures. Thus RB1 inactivation may predict the risk of LuAD transformation to a more aggressive type of lung cancer, and may need to be considered as a part of the clinical management of NSK-LuADs patients.This work was supported by the Fundacion Cientifica Asociacion Española Contra el Cancer-AECC (grant number GCB14142170MONT) to LMM, MS-C, and EF; the Spanish Ministry of Economy and Competitivity-MINECO (grant number SAF-2017-82186R to MS-C; Rio Hortega-CM17/00180 to MS; PROYBAR17005NADA to EN); the Health Institute Carlos III-ISCIII, Fondo Europeo de Desarrollo Regional-FEDER (grant Number PT13/0001/0044, PT17/0009/0019, PI16 01821); the Government of Navarra (grant number DIANA project); and the Ramon Areces Foundation (no grant number is applicable) to LMM and RP.S
Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients.
Treatment of multidrug resistant tuberculosis (MDR-TB) is lengthy, toxic, expensive, and has generally poor outcomes. We undertook an individual patient data meta-analysis to assess the impact on outcomes of the type, number, and duration of drugs used to treat MDR-TB
Activation of NF-kB Pathway by Virus Infection Requires Rb Expression
The retinoblastoma protein Rb is a tumor suppressor involved in cell cycle control, differentiation, and inhibition of oncogenic transformation. Besides these roles, additional functions in the control of immune response have been suggested. In the present study we investigated the consequences of loss of Rb in viral infection. Here we show that virus replication is increased by the absence of Rb, and that Rb is required for the activation of the NF-kB pathway in response to virus infection. These results reveal a novel role for tumor suppressor Rb in viral infection surveillance and further extend the concept of a link between tumor suppressors and antiviral activity
Formin1 Mediates the Induction of Dendritogenesis and Synaptogenesis by Neurogenin3 in Mouse Hippocampal Neurons
Neurogenin3, a proneural transcription factor controlled by Notch receptor, has been recently shown to regulate dendritogenesis and synaptogenesis in mouse hippocampal neurons. However, little is known about the molecular mechanisms involved in these actions of Ngn3. We have used a microarray analysis to identify Ngn3 regulated genes related with cytoskeleton dynamics. One of such genes is Fmn1, whose protein, Formin1, is associated with actin and microtubule cytoskeleton. Overexpression of the Fmn1 isoform-Ib in cultured mouse hippocampal neurons induced an increase in the number of primary dendrites and in the number of glutamatergic synaptic inputs at 4 days in vitro. The same changes were provoked by overexpression of Ngn3. In addition downregulation of Fmn1 by the use of Fmn1-siRNAs impaired such morphological and synaptic changes induced by Ngn3 overexpression in neurons. These results reveal a previously unknown involvement of Formin1 in dendritogenesis and synaptogenesis and indicate that this protein is a key component of the Ngn3 signaling pathway that controls neuronal differentiation
MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network.
The continuous flow of new research articles on MDR-TB diagnosis, treatment, prevention and rehabilitation requires frequent update of existing guidelines. This review is aimed at providing clinicians and public health staff with an updated and easy-to-consult document arising from consensus of Global Tuberculosis Network (GTN) experts. The core published documents and guidelines have been reviewed, including the recently published MDR-TB WHO rapid advice and ATS/CDC/ERS/IDSA guidelines. After a rapid review of epidemiology and risk factors, the clinical priorities on MDR-TB diagnosis (including whole genome sequencing and drug-susceptibility testing interpretations) and treatment (treatment design and management, TB in children) are discussed. Furthermore, the review comprehensively describes the latest information on contact tracing and LTBI management in MDR-TB contacts, while providing guidance on post-treatment functional evaluation and rehabilitation of TB sequelae, infection control and other public health priorities
Management of MDR-TB in HIV co-infected patients in Eastern Europe: Results from the TB:HIV study
Objectives Mortality among HIV patients with tuberculosis (TB) remains high in Eastern Europe (EE), but details of TB and HIV management remain scarce. Methods In this prospective study, we describe the TB treatment regimens of patients with multi-drug resistant (MDR) TB and use of antiretroviral therapy (ART). Results A total of 105 HIV-positive patients had MDR-TB (including 33 with extensive drug resistance) and 130 pan-susceptible TB. Adequate initial TB treatment was provided for 8% of patients with MDR-TB compared with 80% of those with pan-susceptible TB. By twelve months, an estimated 57.3% (95%CI 41.5\u201374.1) of MDR-TB patients had started adequate treatment. While 67% received ART, HIV-RNA suppression was demonstrated in only 23%. Conclusions Our results show that internationally recommended MDR-TB treatment regimens were infrequently used and that ART use and viral suppression was well below the target of 90%, reflecting the challenging patient population and the environment in which health care is provided. Urgent improvement of management of patients with TB/HIV in EE, in particular for those with MDR-TB, is needed and includes widespread access to rapid TB diagnostics, better access to and use of second-line TB drugs, timely ART initiation with viral load monitoring, and integration of TB/HIV care
A survey of the clinicopathological and molecular characteristics of patients with suspected Lynch syndrome in Latin America
Background: Genetic counselling and testing for Lynch syndrome (LS) have recently been introduced in several Latin America countries. We aimed to characterize the clinical, molecular and mismatch repair (MMR) variants spectrum of patients with suspected LS in Latin America.
Methods: Eleven LS hereditary cancer registries and 34 published LS databases were used to identify unrelated families that fulfilled the Amsterdam II (AMSII) criteria and/or the Bethesda guidelines or suggestive of a dominant colorectal (CRC) inheritance syndrome.
Results: We performed a thorough investigation of 15 countries and identified 6 countries where germline genetic testing for LS is available and 3 countries where tumor testing is used in the LS diagnosis. The spectrum of pathogenic MMR variants included MLH1 up to 54%, MSH2 up to 43%, MSH6 up to 10%, PMS2 up to 3% and EPCAM up to 0.8%. The Latin America MMR spectrum is broad with a total of 220 different variants which 80% were private and 20% were recurrent. Frequent regions included exons 11 of MLH1 (15%), exon 3 and 7 of MSH2 (17 and 15%, respectively), exon 4 of MSH6 (65%), exons 11 and 13 of PMS2 (31% and 23%, respectively). Sixteen international founder variants in MLH1, MSH2 and MSH6 were identified and 41 (19%) variants have not previously been reported, thus representing novel genetic variants in the MMR genes. The AMSII criteria was the most used clinical criteria to identify pathogenic MMR carriers although microsatellite instability, immunohistochemistry and family history are still the primary methods in several countries where no genetic testing for LS is available yet.
Conclusion: The Latin America LS pathogenic MMR variants spectrum included new variants, frequently altered genetic regions and potential founder effects, emphasizing the relevance implementing Lynch syndrome genetic testing and counseling in all of Latin America countries.Radium Hospital Foundation (Oslo, Norway) in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript, Helse Sør-Øst (Norway) in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript, the French Association Recherche contre le Cancer (ARC) in the analysis, and interpretation of data, the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (Gefluc) in the analysis, and interpretation of data, the Association Nationale de la Recherche et de la Technologie (ANRT, CIFRE PhD fellowship to H.T.) in the analysis, and interpretation of data and by the OpenHealth Institute in the analysis, and interpretation of data. Barretos Cancer Hospital received financial support by FINEP-CT-INFRA (02/2010)info:eu-repo/semantics/publishedVersio
CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative
Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
A fractal nature for polymerized laminin
Polylaminin (polyLM) is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying
distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin
and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal
fluorescence microscopy (CFM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize its
three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a
loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix
obtained upon adsorption of laminin in neutral pH (LM) was constituted of bulky protein aggregates whose interior was not
accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat
polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical
and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that
the morphology of the polymer was alike independently of the magnification used for the observation. A search for the
Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55,
1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal
nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the
neurogenic niches of the central nervous system.This work was supported by a grant from the Brazilian National Research Council (CNPq; 476772/2008-7) to TCS. MSS acknowledges support from the European Research Council through ERC - 306990. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Hochman Méndez, C.; Cantini ., M.; Moratal Pérez, D.; Salmerón Sánchez, M.; Coelho-Sampaio, T. (2014). A fractal nature for polymerized laminin. PLoS ONE. 9(10):109388-1-109388-11. https://doi.org/10.1371/journal.pone.0109388S109388-1109388-11910Durbeej, M. (2009). Laminins. Cell and Tissue Research, 339(1), 259-268. doi:10.1007/s00441-009-0838-2Miner, J. H., & Yurchenco, P. D. (2004). LAMININ FUNCTIONS IN TISSUE MORPHOGENESIS. Annual Review of Cell and Developmental Biology, 20(1), 255-284. doi:10.1146/annurev.cellbio.20.010403.094555Yurchenco, P. D. (2010). Basement Membranes: Cell Scaffoldings and Signaling Platforms. Cold Spring Harbor Perspectives in Biology, 3(2), a004911-a004911. doi:10.1101/cshperspect.a004911Hohenester, E., & Yurchenco, P. D. (2013). Laminins in basement membrane assembly. Cell Adhesion & Migration, 7(1), 56-63. doi:10.4161/cam.21831Freire, E., & Coelho-Sampaio, T. (2000). Self-assembly of Laminin Induced by Acidic pH. Journal of Biological Chemistry, 275(2), 817-822. doi:10.1074/jbc.275.2.817Freire, E., Sant’Ana Barroso, M. M., Klier, R. N., & Coelho-Sampaio, T. (2011). Biocompatibility and Structural Stability of a Laminin Biopolymer. Macromolecular Bioscience, 12(1), 67-74. doi:10.1002/mabi.201100125Freire, E. (2002). Structure of laminin substrate modulates cellular signaling for neuritogenesis. Journal of Cell Science, 115(24), 4867-4876. doi:10.1242/jcs.00173Hochman-Mendez, C., Lacerda de Menezes, J. R., Sholl-Franco, A., & Coelho-Sampaio, T. (2013). Polylaminin recognition by retinal cells. Journal of Neuroscience Research, 92(1), 24-34. doi:10.1002/jnr.23298Menezes, K., Ricardo Lacerda de Menezes, J., Assis Nascimento, M., de Siqueira Santos, R., & Coelho-Sampaio, T. (2010). Polylaminin, a polymeric form of laminin, promotes regeneration after spinal cord injury. The FASEB Journal, 24(11), 4513-4522. doi:10.1096/fj.10-157628Barroso, M. M. S., Freire, E., Limaverde, G. S. C. S., Rocha, G. M., Batista, E. J. O., Weissmüller, G., … Coelho-Sampaio, T. (2008). Artificial Laminin Polymers Assembled in Acidic pH Mimic Basement Membrane Organization. Journal of Biological Chemistry, 283(17), 11714-11720. doi:10.1074/jbc.m709301200Freire, E. (2004). Sialic acid residues on astrocytes regulate neuritogenesis by controlling the assembly of laminin matrices. Journal of Cell Science, 117(18), 4067-4076. doi:10.1242/jcs.01276Hausdorff, F. (1918). Dimension und �u�eres Ma�. Mathematische Annalen, 79(1-2), 157-179. doi:10.1007/bf01457179Soille, P., & Rivest, J.-F. (1996). On the Validity of Fractal Dimension Measurements in Image Analysis. Journal of Visual Communication and Image Representation, 7(3), 217-229. doi:10.1006/jvci.1996.0020Theiler, J. (1990). Estimating fractal dimension. Journal of the Optical Society of America A, 7(6), 1055. doi:10.1364/josaa.7.001055Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076Iranfar, H., Rajabi, O., Salari, R., & Chamani, J. (2012). Probing the Interaction of Human Serum Albumin with Ciprofloxacin in the Presence of Silver Nanoparticles of Three Sizes: Multispectroscopic and ζ Potential Investigation. The Journal of Physical Chemistry B, 116(6), 1951-1964. doi:10.1021/jp210685qPalmero, C. Y., Miranda-Alves, L., Sant’Ana Barroso, M. M., Souza, E. C. L., Machado, D. E., Palumbo-Junior, A., … Nasciutti, L. E. (2013). The follicular thyroid cell line PCCL3 responds differently to laminin and to polylaminin, a polymer of laminin assembled in acidic pH. Molecular and Cellular Endocrinology, 376(1-2), 12-22. doi:10.1016/j.mce.2013.05.020Behrens, D. T., Villone, D., Koch, M., Brunner, G., Sorokin, L., Robenek, H., … Hansen, U. (2012). The Epidermal Basement Membrane Is a Composite of Separate Laminin- or Collagen IV-containing Networks Connected by Aggregated Perlecan, but Not by Nidogens. Journal of Biological Chemistry, 287(22), 18700-18709. doi:10.1074/jbc.m111.336073Colognato, H., Winkelmann, D. A., & Yurchenco, P. D. (1999). Laminin Polymerization Induces a Receptor–Cytoskeleton Network. The Journal of Cell Biology, 145(3), 619-631. doi:10.1083/jcb.145.3.619Liesi, P., & Silver, J. (1988). Is astrocyte laminin involved in axon guidance in the mammalian CNS? Developmental Biology, 130(2), 774-785. doi:10.1016/0012-1606(88)90366-1Zhou, F. C. (1990). Four patterns of laminin-immunoreactive structure in developing rat brain. Developmental Brain Research, 55(2), 191-201. doi:10.1016/0165-3806(90)90200-iGarcia-Abreu, J., Cavalcante, L. A., & Neto, V. M. (1995). Differential patterns of laminin expression in lateral and medial midbrain glia. NeuroReport, 6(5), 761-764. doi:10.1097/00001756-199503270-00014Kazanis, I., & ffrench-Constant, C. (2011). Extracellular matrix and the neural stem cell niche. Developmental Neurobiology, 71(11), 1006-1017. doi:10.1002/dneu.20970Mercier F, Schnack J, Chaumet MSG (2011) Chapter 4 Fractones: home and conductors of the neural stem cell niche. In: Seki, T., Sawamoto, K., Parent, J. M., Alvarez-Buylla, A., (Eds.) Neurogenesis in the adult brain I: neurobiology. Springer. pp 109–133.CAVALCANTIADAM, E., MICOULET, A., BLUMMEL, J., AUERNHEIMER, J., KESSLER, H., & SPATZ, J. (2006). Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. European Journal of Cell Biology, 85(3-4), 219-224. doi:10.1016/j.ejcb.2005.09.011Frith, J. E., Mills, R. J., & Cooper-White, J. J. (2012). Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour. Journal of Cell Science, 125(2), 317-327. doi:10.1242/jcs.087916Hernández, J. C. R., Salmerón Sánchez, M., Soria, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2007). Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 93(1), 202-207. doi:10.1529/biophysj.106.102491Douet, V., Kerever, A., Arikawa-Hirasawa, E., & Mercier, F. (2013). Fractone-heparan sulphates mediate FGF-2 stimulation of cell proliferation in the adult subventricular zone. Cell Proliferation, 46(2), 137-145. doi:10.1111/cpr.12023Nikolova, G., Strilic, B., & Lammert, E. (2007). The vascular niche and its basement membrane. Trends in Cell Biology, 17(1), 19-25. doi:10.1016/j.tcb.2006.11.005Yurchenco, P. D., Amenta, P. S., & Patton, B. L. (2004). Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biology, 22(7), 521-538. doi:10.1016/j.matbio.2003.10.006Nikolova, G., Jabs, N., Konstantinova, I., Domogatskaya, A., Tryggvason, K., Sorokin, L., … Lammert, E. (2006). The Vascular Basement Membrane: A Niche for Insulin Gene Expression and β Cell Proliferation. Developmental Cell, 10(3), 397-405. doi:10.1016/j.devcel.2006.01.015Qu, H., Liu, X., Ni, Y., Jiang, Y., Feng, X., Xiao, J., … Zheng, C. (2014). Laminin 411 acts as a potent inducer of umbilical cord mesenchymal stem cell differentiation into insulin-producing cells. Journal of Translational Medicine, 12(1), 135. doi:10.1186/1479-5876-12-135Kanatsu-Shinohara, M., & Shinohara, T. (2013). Spermatogonial Stem Cell Self-Renewal and Development. Annual Review of Cell and Developmental Biology, 29(1), 163-187. doi:10.1146/annurev-cellbio-101512-122353Lander, A. D., Kimble, J., Clevers, H., Fuchs, E., Montarras, D., Buckingham, M., … Oskarsson, T. (2012). What does the concept of the stem cell niche really mean today? BMC Biology, 10(1). doi:10.1186/1741-7007-10-19Loulier, K., Lathia, J. D., Marthiens, V., Relucio, J., Mughal, M. R., Tang, S.-C., … ffrench-Constant, C. (2009). β1 Integrin Maintains Integrity of the Embryonic Neocortical Stem Cell Niche. PLoS Biology, 7(8), e1000176. doi:10.1371/journal.pbio.100017
Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children
Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C
- …