522 research outputs found

    Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study

    Get PDF
    [NiFe] hydrogenases are metalloenzymes that catalyze the reversible cleavage of dihydrogen (H2), a clean future fuel. Understanding the mechanism of these biocatalysts requires spectroscopic techniques that yield insights into the structure and dynamics of the [NiFe] active site. Due to the presence of CO and CN− ligands at this cofactor, infrared (IR) spectroscopy represents an ideal technique for studying these aspects, but molecular information from linear IR absorption experiments is limited. More detailed insights can be obtained from ultrafast nonlinear IR techniques like IRpump-IRprobe and two-dimensional (2D-)IR spectroscopy. However, fully exploiting these advanced techniques requires an in-depth understanding of experimental observables and the encoded molecular information. To address this challenge, we present a descriptive and predictive computational approach for the simulation and analysis of static 2D-IR spectra of [NiFe] hydrogenases and similar organometallic systems. Accurate reproduction of experimental spectra from a first-coordination-sphere model suggests a decisive role of the [NiFe] core in shaping the enzymatic potential energy surface. We also reveal spectrally encoded molecular information that is not accessible by experiments, thereby helping to understand the catalytic role of the diatomic ligands, structural differences between [NiFe] intermediates, and possible energy transfer mechanisms. Our studies demonstrate the feasibility and benefits of computational spectroscopy in the 2D-IR investigation of hydrogenases, thereby further strengthening the potential of this nonlinear IR technique as a powerful research tool for the investigation of complex bioinorganic molecules

    Effects of Youth Tobacco Access and Possession Policy Interventions on Heavy Adolescent Smokers

    Get PDF
    This study evaluated the effects of tobacco PUP (Purchase, Use and Possession) laws on tobacco use patterns among students in twenty-four towns, which were randomly assigned into an experimental and a control group. The experimental group involved both PUP law enforcement and reducing minors’ access to commercial sources of tobacco, and the condition for the control group involved only efforts to reduce minors’ access to commercial sources of tobacco. The present study found that adolescents in the control group had a significantly greater increase in the percentage of youth who smoked 20 or more cigarettes per day when compared to the experimental group

    Understanding 2D-IR Spectra of Hydrogenases : A Descriptive and Predictive Computational Study

    Get PDF
    [NiFe] hydrogenases are metalloenzymes that catalyze the reversible cleavage of dihydrogen (H2), a clean future fuel. Understanding the mechanism of these biocatalysts requires spectroscopic techniques that yield insights into the structure and dynamics of the [NiFe] active site. Due to the presence of CO and CN− ligands at this cofactor, infrared (IR) spectroscopy represents an ideal technique for studying these aspects, but molecular information from linear IR absorption experiments is limited. More detailed insights can be obtained from ultrafast nonlinear IR techniques like IRpump-IRprobe and two-dimensional (2D-)IR spectroscopy. However, fully exploiting these advanced techniques requires an in-depth understanding of experimental observables and the encoded molecular information. To address this challenge, we present a descriptive and predictive computational approach for the simulation and analysis of static 2D-IR spectra of [NiFe] hydrogenases and similar organometallic systems. Accurate reproduction of experimental spectra from a first-coordination-sphere model suggests a decisive role of the [NiFe] core in shaping the enzymatic potential energy surface. We also reveal spectrally encoded molecular information that is not accessible by experiments, thereby helping to understand the catalytic role of the diatomic ligands, structural differences between [NiFe] intermediates, and possible energy transfer mechanisms. Our studies demonstrate the feasibility and benefits of computational spectroscopy in the 2D-IR investigation of hydrogenases, thereby further strengthening the potential of this nonlinear IR technique as a powerful research tool for the investigation of complex bioinorganic molecules

    Universal design for learning in anatomy education of healthcare students: A scoping review

    Get PDF
    There are concerns among healthcare practitioners about poor anatomical knowledge among recent healthcare graduates. Universal Design for Learning (UDL) is a framework developed to enhance students' experience of learning and help students to become motivated learners. This scoping review identified whether UDL has been utilized in third level healthcare education and if so, whether it had been used to enhance student motivation to study anatomy. Seven online databases were searched for studies reporting the use of UDL in the curricula of medical, dental, occupational therapy (OT) or speech and language therapy (SLT) programs. Studies were screened for eligibility with set inclusion criteria. Data were extracted and analyzed. Analysis revealed that UDL was not specifically mentioned in any of the studies thus there are no published studies on UDL being formally applied in healthcare education. However, the authors identified 33 publications that described teaching methods which aligned with UDL in anatomy curricula and a thematic analysis yielded four main themes relating to teaching strategies being employed. Universal design for learning was not mentioned specifically, indicating that educators may not be aware of the educational framework, although they appeared to be utilizing aspects of it in their teaching. The review revealed that there is a lack of research concerning the anatomy education of OT and SLT students. The role of UDL in enhancing motivation to learn anatomy in medical, dental, OT and SLT programs has yet to be explored

    Moral panic and social theory: Beyond the heuristic

    Get PDF
    Copyright @ 2011 by International Sociological Association.Critcher has recently conceptualized moral panic as a heuristic device, or 'ideal type'. While he argues that one still has to look beyond the heuristic, despite a few exceptional studies there has been little utilization of recent developments in social theory in order to look 'beyond moral panic'. Explicating two current critical contributions - the first, drawing from the sociologies of governance and risk; the second, from the process/figurational sociology of Norbert Elias - this article highlights the necessity for the continuous theoretical development of the moral panic concept and illustrates how such development is essential to overcome some of the substantial problems with moral panic research: normativity, temporality and (un) intentionality

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    MHC Class I Bound to an Immunodominant Theileria parva Epitope Demonstrates Unconventional Presentation to T Cell Receptors

    Get PDF
    T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1214–224 epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]
    corecore