66 research outputs found

    Urbanisation and incidence of acute lymphocytic leukaemia among United States children aged 0–4

    Get PDF
    Acute lymphocytic leukaemia (ALL) incidence among children under 5 years of age was examined, utilising data from 24 United States cancer registries. County-based incidence rates among white children were compared across four levels of urbanisation: large and small metropolitan counties, and adjacent and nonadjacent rural counties. In metropolitan areas, the incidence of ALL was lower among blacks (rate ratio (RR)=0.38, confidence interval (CI)=0.33–0.44) and among Asians/Pacific Islanders (RR=0.78, CI=0.63–0.97) than among whites. Among white children, the incidence of ALL decreased across the four strata of urbanisation, from 67 to 62 to 65 to 54 cases per million person-years at-risk (two-sided trend P=0.009), such that rates were significantly lower in the most remote rural counties than in the most populous metropolitan counties (RR=0.80, 95% CI=0.70–0.91)

    Afferent arteriolopathy and glomerular collapse but not segmental sclerosis induce tubular atrophy in old spontaneously hypertensive rats

    Get PDF
    In chronic renal disease, the temporal and spatial relationship between vascular, glomerular and tubular changes is still unclear. Hypertension, an important cause of chronic renal failure, leads to afferent arteriolopathy, segmental glomerulosclerosis and tubular atrophy in the juxtamedullary cortex. We investigated the pathological changes of hypertensive renal disease in aged spontaneously hypertensive rats using a large number of serial sections, where we traced and analyzed afferent arteriole, glomerulus and proximal tubule of single nephrons. Our major finding was that both afferent arteriolopathy and glomerular capillary collapse were linked to tubular atrophy. Only nephrons with glomerular collapse (n = 13) showed tubules with reduced diameter indicating atrophy [21.66 ± 2.56 μm vs. tubules in normotensive Wistar Kyoto rats (WKY) 38.56 ± 0.56 μm, p < 0.05], as well as afferent arteriolar wall hypertrophy (diameter 32.74 ± 4.72 μm vs. afferent arterioles in WKY 19.24 ± 0.98 μm, p < 0.05). Nephrons with segmental sclerosis (n = 10) did not show tubular atrophy and tubular diameters were unchanged (35.60 ± 1.43 μm). Afferent arteriolar diameter negatively correlated with glomerular capillary volume fraction (r = −0.36) and proximal tubular diameter (r = −0.46) implying reduced glomerular and tubular flow. In line with this, chronically damaged tubules showed reduced staining for the ciliary protein inversin indicating changed ciliary signalling due to reduced urinary flow. This is the first morphological study on hypertensive renal disease making correlations between vascular, glomerular and tubular components of individual nephron units. Our data suggest that afferent arteriolopathy leads to glomerular collapse and reduced urinary flow with subsequent tubular atrophy

    How bold is blood oxygenation level dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions

    Get PDF
    Renal tissue hypoperfusion and hypoxia are key elements in the pathophysiology of acute kidney injury and its progression to chronic kidney disease. Yet, in vivo assessment of renal haemodynamics and tissue oxygenation remains a challenge. Many of the established approaches are invasive, hence not applicable in humans. Blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) offers an alternative. BOLD-MRI is non-invasive and indicative of renal tissue oxygenation. Nonetheless recent (pre-)clinical studies revived the question as to how bold renal BOLD-MRI really is. This review aims to deliver some answers. It is designed to inspire the renal physiology, nephrology, and imaging communities to foster explorations into the assessment of renal oxygenation and haemodynamics by exploiting the powers of MRI. For this purpose the specifics of renal oxygenation and perfusion are outlined. The fundamentals of BOLD-MRI are summarized. The link between tissue oxygenation and the oxygenation sensitive MR biomarker T2 * is outlined. The merits and limitations of renal BOLD-MRI in animal and human studies are surveyed together with their clinical implications. Explorations into detailing the relation between renal T2 * and renal tissue partial pressure of oxygen (pO2 ) are discussed with a focus on factors confounding the T2 * versus tissue pO2 relation. Multi-modality in vivo approaches suitable for detailing the role of the confounding factors that govern T2 * are considered. A schematic approach describing the link between renal perfusion, oxygenation, tissue compartments and renal T2 * is proposed. Future directions of MRI assessment of renal oxygenation and perfusion are explored

    New Strategies in Sport Nutrition to Increase Exercise Performance.

    Get PDF
    Despite over 50 years of research, the field of sports nutrition continues to grow at a rapid rate. Whilst the traditional research focus was one that centred on strategies to maximize competition performance, emerging data in the last decade has demonstrated how both macronutrient and micronutrient availability can play a prominent role in regulating those cell signalling pathways that modulate skeletal muscle adaptations to endurance and resistance training. Nonetheless, in the context of exercise performance, it is clear that carbohydrate (but not fat) still remains king and that carefully chosen ergogenic aids (e.g. caffeine, creatine, sodium bicarbonate, beta-alanine, nitrates) can all promote performance in the correct exercise setting. In relation to exercise training, however, it is now thought that strategic periods of reduced carbohydrate and elevated dietary protein intake may enhance training adaptations whereas high carbohydrate availability and antioxidant supplementation may actually attenuate training adaptation. Emerging evidence also suggests that vitamin D may play a regulatory role in muscle regeneration and subsequent hypertrophy following damaging forms of exercise. Finally, novel compounds (albeit largely examined in rodent models) such as epicatechins, nicotinamide riboside, resveratrol, β-hydroxy β-methylbutyrate, phosphatidic acid and ursolic acid may also promote or attenuate skeletal muscle adaptations to endurance and strength training. When taken together, it is clear that sports nutrition is very much at the heart of the Olympic motto, Citius, Altius, Fortius (faster, higher, stronger)

    Mechanobiological Modulation of Cytoskeleton and Calcium Influx in Osteoblastic Cells by Short-Term Focused Acoustic Radiation Force

    Get PDF
    Mechanotransduction has demonstrated potential for regulating tissue adaptation in vivo and cellular activities in vitro. It is well documented that ultrasound can produce a wide variety of biological effects in biological systems. For example, pulsed ultrasound can be used to noninvasively accelerate the rate of bone fracture healing. Although a wide range of studies has been performed, mechanism for this therapeutic effect on bone healing is currently unknown. To elucidate the mechanism of cellular response to mechanical stimuli induced by pulsed ultrasound radiation, we developed a method to apply focused acoustic radiation force (ARF) (duration, one minute) on osteoblastic MC3T3-E1 cells and observed cellular responses to ARF using a spinning disk confocal microscope. This study demonstrates that the focused ARF induced F-actin cytoskeletal rearrangement in MC3T3-E1 cells. In addition, these cells showed an increase in intracellular calcium concentration following the application of focused ARF. Furthermore, passive bending movement was noted in primary cilium that were treated with focused ARF. Cell viability was not affected. Application of pulsed ultrasound radiation generated only a minimal temperature rise of 0.1°C, and induced a streaming resulting fluid shear stress of 0.186 dyne/cm2, suggesting that hyperthermia and acoustic streaming might not be the main causes of the observed cell responses. In conclusion, these data provide more insight in the interactions between acoustic mechanical stress and osteoblastic cells. This experimental system could serve as basis for further exploration of the mechanosensing mechanism of osteoblasts triggered by ultrasound

    Monitoring renal hemodynamics and oxygenation by invasive probes: experimental protocol

    Get PDF
    Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe methods to study control of renal hemodynamics and tissue oxygenation by means of invasive probes in anesthetized rats. Step-by-step protocols are provided for two setups, one for experiments in laboratories for integrative physiology and the other for experiments within small-animal magnetic resonance scanners.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by a separate chapter describing the basic concepts of quantitatively assessing renal perfusion and oxygenation with invasive probes

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore