147 research outputs found

    The responses of the four main substitution mechanisms of H in olivine to H2O activity at 1050 °C and 3 GPa

    Get PDF
    The water solubility in olivine (CH2O) has been investigated at 1050 °C and 3 GPa as a function of water activity (aH2O) at subsolidus conditions in the piston-cylinder apparatus, with aH2O varied using H2O–NaCl fluids. Four sets of experiments were conducted to constrain the effect of aH2O on the four main substitution mechanisms. The experiments were designed to grow olivine in situ and thus achieve global equilibrium (G-type), as opposed to hydroxylating olivine with a pre-existing point-defect structure and impurity content (M-type). Olivine grains from the experiments were analysed with polarised and unpolarised FTIR spectroscopy, and where necessary, the spectra have been deconvoluted to quantify the contribution of each substitution mechanism. Olivine buffered with magnesiowüstite produced absorbance bands at high wavenumbers ranging from 3566 to 3612 cm−1. About 50% of the total absorbance was found parallel to the a-axis, 30% parallel to the b-axis and 20% parallel to the c-axis. The total absorbance and hence water concentration in olivine follows the relationship of CH2O∝aH2O2, indicating that the investigated defect must involve four H atoms substituting for one Si atom (labelled as [Si]). Forsterite buffered with enstatite produced an absorbance band exclusively aligned parallel the c-axis at 3160 cm−1. The band position, polarisation and observed CH2O∝aH2O are consistent with two H substituting for one Mg (labelled as [Mg]). Ti-doped, enstatite-buffered olivine displays absorption bands, and polarisation typical of Ti-clinohumite point defects where two H on the Si-site are charge-balanced by one Ti on a Mg-site (labelled as [Ti]). This is further supported by CH2O∝aH2O and a 1:1 relationship of molar H2O and TiO2 in these experiments. Sc-doped, enstatite-buffered experiments display a main absorption band at 3355 cm−1 with CH2O∝aH2O0.5 and a positive correlation of Sc and H, indicating the coupled substitution of a trivalent cation plus a H for two Mg (labelled as [triv]). Our data demonstrate that extreme care has to be taken when inferences from experiments conducted at aH2O=1 are applied to the mantle, where in most cases, a low aH2O persists. In particular, the higher exponent of the [Si] substitution mechanism means that the contribution of this hydrous defect to total water content will decrease more rapidly with decreasing aH2O than the contributions of the other substitution mechanisms. The experiments confirm previous results that the [Mg] mechanism holds an almost negligible amount of water under nearly all T-P-fO2-fH2O conditions that may be anticipated in nature. However, the small amounts of H2O we find in substituting by this mechanism are similar in the experiments on forsterite doped with either Sc or Ti to those in the undoped forsterite at equivalent aH2O (all buffered by enstatite), confirming the assumption that, thermodynamically, CH2O substituting by each mechanism does not depend on the water concentration that substitutes by other mechanisms.We gratefully acknowledge the Australian Research Council (ARC) support through DP110103134 to JH and HON, and FL130100066 to HON, which partly supported PT during the final stages of this project. RS acknowledges an Australian Postgraduate Award

    The application and use of chemical space mapping to interpret crystallization screening results

    Get PDF
    Mapping crystallization results in chemical space helps to correlate seemingly distant relationships between crystallization conditions, points to possible optimization strategies and reveals promising unsampled areas of crystallization space

    Differential modes of DNA binding by mismatch uracil DNA glycosylase from Escherichia coli: implications for abasic lesion processing and enzyme communication in the base excision repair pathway

    Get PDF
    Mismatch uracil DNA glycosylase (Mug) from Escherichia coli is an initiating enzyme in the base-excision repair pathway. As with other DNA glycosylases, the abasic product is potentially more harmful than the initial lesion. Since Mug is known to bind its product tightly, inhibiting enzyme turnover, understanding how Mug binds DNA is of significance when considering how Mug interacts with downstream enzymes in the base-excision repair pathway. We have demonstrated differential binding modes of Mug between its substrate and abasic DNA product using both band shift and fluorescence anisotropy assays. Mug binds its product cooperatively, and a stoichiometric analysis of DNA binding, catalytic activity and salt-dependence indicates that dimer formation is of functional significance in both catalytic activity and product binding. This is the first report of cooperativity in the uracil DNA glycosylase superfamily of enzymes, and forms the basis of product inhibition in Mug. It therefore provides a new perspective on abasic site protection and the findings are discussed in the context of downstream lesion processing and enzyme communication in the base excision repair pathway

    Galactic foreground contribution to the BEAST CMB Anisotropy Maps

    Full text link
    We report limits on the Galactic foreground emission contribution to the Background Emission Anisotropy Scanning Telescope (BEAST) Ka- and Q-band CMB anisotropy maps. We estimate the contribution from the cross-correlations between these maps and the foreground emission templates of an Hα{\alpha} map, a de-striped version of the Haslam et al. 408 MHz map, and a combined 100 μ\mum IRAS/DIRBE map. Our analysis samples the BEAST 10\sim10^\circ declination band into 24 one-hour (RA) wide sectors with 7900\sim7900 pixels each, where we calculate: (a) the linear correlation coefficient between the anisotropy maps and the templates; (b) the coupling constants between the specific intensity units of the templates and the antenna temperature at the BEAST frequencies and (c) the individual foreground contributions to the BEAST anisotropy maps. The peak sector contributions of the contaminants in the Ka-band are of 56.5% free-free with a coupling constant of 8.3±0.48.3\pm0.4 μ\muK/R, and 67.4% dust with 45.0±2.045.0\pm2.0 μ\muK/(MJy/sr). In the Q-band the corresponding values are of 64.4% free-free with 4.1±0.24.1\pm0.2 μ\muK/R and 67.5% dust with 24.0±1.024.0\pm1.0 μ\muK/(MJy/sr). Using a lower limit of 10% in the relative uncertainty of the coupling constants, we can constrain the sector contributions of each contaminant in both maps to <20< 20% in 21 (free-free), 19 (dust) and 22 (synchrotron) sectors. At this level, all these sectors are found outside of the \midb=14.6\mid = 14.6^\circ region. By performing the same correlation analysis as a function of Galactic scale height, we conclude that the region within b=±17.5b=\pm17.5^{\circ} should be removed from the BEAST maps for CMB studies in order to keep individual Galactic contributions below 1\sim 1% of the map's rms.Comment: 17 pages PostScript file. Better resolution figures can be found in the web page http://www.das.inpe.br/~alex/beast_foregrounds.html. Accepted for publication in the ApJ Suppl. Serie

    Antimalarial Iron Chelator, FBS0701, Shows Asexual and Gametocyte Plasmodium falciparum Activity and Single Oral Dose Cure in a Murine Malaria Model

    Get PDF
    Iron chelators for the treatment of malaria have proven therapeutic activity in vitro and in vivo in both humans and mice, but their clinical use is limited by the unsuitable absorption and pharmacokinetic properties of the few available iron chelators. FBS0701, (S)3”-(HO)-desazadesferrithiocin-polyether [DADFT-PE], is an oral iron chelator currently in Phase 2 human studies for the treatment of transfusional iron overload. The drug has very favorable absorption and pharmacokinetic properties allowing for once-daily use to deplete circulating free iron with human plasma concentrations in the high µM range. Here we show that FBS0701 has inhibition concentration 50% (IC50) of 6 µM for Plasmodium falciparum in contrast to the IC50 for deferiprone and deferoxamine at 15 and 30 µM respectively. In combination, FBS0701 interfered with artemisinin parasite inhibition and was additive with chloroquine or quinine parasite inhibition. FBS0701 killed early stage P. falciparum gametocytes. In the P. berghei Thompson suppression test, a single dose of 100 mg/kg reduced day three parasitemia and prolonged survival, but did not cure mice. Treatment with a single oral dose of 100 mg/kg one day after infection with 10 million lethal P. yoelii 17XL cured all the mice. Pretreatment of mice with a single oral dose of FBS0701 seven days or one day before resulted in the cure of some mice. Plasma exposures and other pharmacokinetics parameters in mice of the 100 mg/kg dose are similar to a 3 mg/kg dose in humans. In conclusion, FBS0701 demonstrates a single oral dose cure of the lethal P. yoelii model. Significantly, this effect persists after the chelator has cleared from plasma. FBS0701 was demonstrated to remove labile iron from erythrocytes as well as enter erythrocytes to chelate iron. FBS0701 may find clinically utility as monotherapy, a malarial prophylactic or, more likely, in combination with other antimalarials

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi

    Get PDF
    Abstract Wood decayed by brown rot fungi and wood treated with the chelator-mediated Fenton (CMF) reaction, either alone or together with a cellulose enzyme cocktail, was analyzed by small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Results showed that the CMF mechanism mimicked brown rot fungal attack for both holocellulose and lignin components of the wood. Crystalline cellulose and lignin were both depolymerized by the CMF reaction. Porosity of the softwood cell wall did not increase during CMF treatment, enzymes secreted by the fungi did not penetrate the decayed wood. The enzymes in the cellulose cocktail also did not appear to alter the effects of the CMF-treated wood relative to enhancing cell wall deconstruction. This suggests a rethinking of current brown rot decay models and supports a model where monomeric sugars and oligosaccharides diffuse from the softwood cell walls during non-enzymatic action. In this regard, the CMF mechanism should not be thought of as a “pretreatment” used to permit enzymatic penetration into softwood cell walls, but instead it enhances polysaccharide components diffusing to fungal enzymes located in wood cell lumen environments during decay. SANS and other data are consistent with a model for repolymerization and aggregation of at least some portion of the lignin within the cell wall, and this is supported by AFM and TEM data. The data suggest that new approaches for conversion of wood substrates to platform chemicals in biorefineries could be achieved using the CMF mechanism with >75% solubilization of lignocellulose, but that a more selective suite of enzymes and other downstream treatments may be required to work when using CMF deconstruction technology. Strategies to enhance polysaccharide release from lignocellulose substrates for enhanced enzymatic action and fermentation of the released fraction would also aid in the efficient recovery of the more uniform modified lignin fraction that the CMF reaction generates to enhance biorefinery profitability

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmän Schizophrenia Working Grp Psychiat jäsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe
    corecore