148 research outputs found
Comprehensive Peroxidase-Based Hematologic Profiling for The Prediction of 1-Year Myocardial Infarction and Death
Background— Recognition of biological patterns holds promise for improved identification of patients at risk for myocardial infarction (MI) and death. We hypothesized that identifying high- and low-risk patterns from a broad spectrum of hematologic phenotypic data related to leukocyte peroxidase-, erythrocyte- and platelet-related parameters may better predict future cardiovascular risk in stable cardiac patients than traditional risk factors alone. Methods and Results— Stable patients (n=7369) undergoing elective cardiac evaluation at a tertiary care center were enrolled. A model (PEROX) that predicts incident 1-year death and MI was derived from standard clinical data combined with information captured by a high-throughput peroxidase-based hematology analyzer during performance of a complete blood count with differential. The PEROX model was developed using a random sampling of subjects in a derivation cohort (n=5895) and then independently validated in a nonoverlapping validation cohort (n=1474). Twenty-three high-risk (observed in ≥10% of subjects with events) and 24 low-risk (observed in ≥10% of subjects without events) patterns were identified in the derivation cohort. Erythrocyte- and leukocyte (peroxidase)-derived parameters dominated the variables predicting risk of death, whereas variables in MI risk patterns included traditional cardiac risk factors and elements from all blood cell lineages. Within the validation cohort, the PEROX model demonstrated superior prognostic accuracy (78%) for 1-year risk of death or MI compared with traditional risk factors alone (67%). Furthermore, the PEROX model reclassified 23.5% (P\u3c0.001) of patients to different risk categories for death/MI when added to traditional risk factors. Conclusion— Comprehensive pattern recognition of high- and low-risk clusters of clinical, biochemical, and hematologic parameters provided incremental prognostic value in stable patients having elective diagnostic cardiac catheterization for 1-year risks of death and MI
Comprehensive Peroxidase-Based Hematologic Profiling for The Prediction of 1-Year Myocardial Infarction and Death
Background— Recognition of biological patterns holds promise for improved identification of patients at risk for myocardial infarction (MI) and death. We hypothesized that identifying high- and low-risk patterns from a broad spectrum of hematologic phenotypic data related to leukocyte peroxidase-, erythrocyte- and platelet-related parameters may better predict future cardiovascular risk in stable cardiac patients than traditional risk factors alone. Methods and Results— Stable patients (n=7369) undergoing elective cardiac evaluation at a tertiary care center were enrolled. A model (PEROX) that predicts incident 1-year death and MI was derived from standard clinical data combined with information captured by a high-throughput peroxidase-based hematology analyzer during performance of a complete blood count with differential. The PEROX model was developed using a random sampling of subjects in a derivation cohort (n=5895) and then independently validated in a nonoverlapping validation cohort (n=1474). Twenty-three high-risk (observed in ≥10% of subjects with events) and 24 low-risk (observed in ≥10% of subjects without events) patterns were identified in the derivation cohort. Erythrocyte- and leukocyte (peroxidase)-derived parameters dominated the variables predicting risk of death, whereas variables in MI risk patterns included traditional cardiac risk factors and elements from all blood cell lineages. Within the validation cohort, the PEROX model demonstrated superior prognostic accuracy (78%) for 1-year risk of death or MI compared with traditional risk factors alone (67%). Furthermore, the PEROX model reclassified 23.5% (P\u3c0.001) of patients to different risk categories for death/MI when added to traditional risk factors. Conclusion— Comprehensive pattern recognition of high- and low-risk clusters of clinical, biochemical, and hematologic parameters provided incremental prognostic value in stable patients having elective diagnostic cardiac catheterization for 1-year risks of death and MI
Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate
There is increasing evidence that amorphous inorganic materials play a key role in biomineralisation in many organisms, however the inherent instability of synthetic analogues in the absence of the complex in vivo matrix limits their study and clinical exploitation. To address this, we report here an approach that enhances long-term stability to >1 year of biologically relevant amorphous metal phosphates, in the absence of any complex stabilisers, by utilising pyrophosphates (P2O7 4-); species themselves ubiquitous in vivo. Ambient temperature precipitation reactions were employed to synthesise amorphous Ca2P2O7.nH2O and Sr2P2O7.nH2O (3.8 < n < 4.2) and their stability and structure were investigated. Pair distribution functions (PDF) derived from synchrotron X-ray data indicated a lack of structural order beyond ~8 A° in both phases, with this local order found to resemble crystalline analogues. Further studies, including 1H and 31P solid state NMR, suggest the unusually high stability of these purely inorganic amorphous phases is partly due to disorder in the P–O–P bond angles within the P2O7 units, which impede crystallization, and to water molecules, which are involved in H-bonds of various strengths within the structures and hamper the formation of an ordered network. In situ high temperature powder X-ray diffraction data indicated that the amorphous nature of both phases surprisingly persisted to ~450° C. Further NMR and TGA studies found that above ambient temperature some water molecules reacted with P2O7 anions, leading to the hydrolysis of some P–O–P linkages and the formation of HPO4 2- anions within the amorphous matrix. The latter anions then recombined into P2O7 ions at higher temperatures prior to crystallization. Together, these findings provide important new materials with unexplored potential for enzyme-assisted resorption and establish factors crucial to isolate further stable amorphous inorganic materials
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.
BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
Association of Killer Cell Immunoglobulin-Like Receptor Genes with Hodgkin's Lymphoma in a Familial Study
BACKGROUND: Epstein-Barr virus (EBV) is the major environmental factor associated with Hodgkin's lymphoma (HL), a common lymphoma in young adults. Natural killer (NK) cells are key actors of the innate immune response against viruses. The regulation of NK cell function involves activating and inhibitory Killer cell Immunoglobulin-like receptors (KIRs), which are expressed in variable numbers on NK cells. Various viral and virus-related malignant disorders have been associated with the presence/absence of certain KIR genes in case/control studies. We investigated the role of the KIR cluster in HL in a family-based association study. METHODOLOGY: We included 90 families with 90 HL index cases (age 16–35 years) and 255 first-degree relatives (parents and siblings). We developed a procedure for reconstructing full genotypic information (number of gene copies) at each KIR locus from the standard KIR gene content. Out of the 90 collected families, 84 were informative and suitable for further analysis. An association study was then carried out with specific family-based analysis methods on these 84 families. PRINCIPAL FINDINGS: Five KIR genes in strong linkage disequilibrium were found significantly associated with HL. Refined haplotype analysis showed that the association was supported by a dominant protective effect of KIR3DS1 and/or KIR2DS1, both of which are activating receptors. The odds ratios for developing HL in subjects with at least one copy of KIR3DS1 or KIR2DS1 with respect to subjects with neither of these genes were 0.44[95% confidence interval 0.23–0.85] and 0.42[0.21–0.85], respectively. No significant association was found in a tentative replication case/control study of 68 HL cases (age 18–71 years). In the familial study, the protective effect of KIR3DS1/KIR2DS1 tended to be stronger in HL patients with detectable EBV in blood or tumour cells. CONCLUSIONS: This work defines a template for family-based association studies based on full genotypic information for the KIR cluster, and provides the first evidence that activating KIRs can have a protective role in HL
Engaging communication experts in a Delphi process to identify patient behaviors that could enhance communication in medical encounters
<p>Abstract</p> <p>Background</p> <p>The communication literature currently focuses primarily on improving physicians' verbal and non-verbal behaviors during the medical interview. The Four Habits Model is a teaching and research framework for physician communication that is based on evidence linking specific communication behaviors with processes and outcomes of care. The Model conceptualizes basic communication tasks as "Habits" and describes the sequence of physician communication behaviors during the clinical encounter associated with improved outcomes. Using the Four Habits Model as a starting point, we asked communication experts to identify the verbal communication behaviors of patients that are important in outpatient encounters.</p> <p>Methods</p> <p>We conducted a 4-round Delphi process with 17 international experts in communication research, medical education, and health care delivery. All rounds were conducted via the internet. In round 1, experts reviewed a list of proposed patient verbal communication behaviors within the Four Habits Model framework. The proposed patient verbal communication behaviors were identified based on a review of the communication literature. The experts could: approve the proposed list; add new behaviors; or modify behaviors. In rounds 2, 3, and 4, they rated each behavior for its fit (agree or disagree) with a particular habit. After each round, we calculated the percent agreement for each behavior and provided these data in the next round. Behaviors receiving more than 70% of experts' votes (either agree or disagree) were considered as achieving consensus.</p> <p>Results</p> <p>Of the 14 originally-proposed patient verbal communication behaviors, the experts modified all but 2, and they added 20 behaviors to the Model in round 1. In round 2, they were presented with 59 behaviors and 14 options to remove specific behaviors for rating. After 3 rounds of rating, the experts retained 22 behaviors. This set included behaviors such as asking questions, expressing preferences, and summarizing information.</p> <p>Conclusion</p> <p>The process identified communication tasks and verbal communication behaviors for patients similar to those outlined for physicians in the Four Habits Model. This represents an important step in building a single model that can be applied to teaching patients and physicians the communication skills associated with improved satisfaction and positive outcomes of care.</p
Global Functional Analyses of Cellular Responses to Pore-Forming Toxins
Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs
Regulation of human CD4+ T cell differentiation
Naive CD4+ T cells differentiate into specific effector subsets—Th1, Th2, Th17, and T follicular helper (Tfh)—that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12Rβ1/TYK2 and IFN-γR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10–secreting cells. IL12Rβ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation
Modulation of Cellular Hsp72 Levels in Undifferentiated and Neuron-Like SH-SY5Y Cells Determines Resistance to Staurosporine-Induced Apoptosis
Increased expression of Hsp72 accompanies differentiation of human neuroblastoma SH-SY5Y cells to neuron-like cells. By modulating cellular levels of Hsp72, we demonstrate here its anti-apoptotic activity both in undifferentiated and neuron-like cells. Thermal preconditioning (43°C for 30 min) induced Hsp72, leading to cellular protection against apoptosis induced by a subsequent treatment with staurosporine. Preconditioned staurosporine-treated cells displayed decreased Bax recruitment to mitochondria and subsequent activation, as well as reduced cytochrome c redistribution from mitochondria. The data are consistent with Hsp72 blocking apoptosis upstream of Bax recruitment to mitochondria. Neuron-like cells (with elevated Hsp72) were more resistant to staurosporine by all measured indices of apoptotic signaling. Use of stable transfectants ectopically expressing moderately elevated levels of Hsp72 revealed that such cells in the undifferentiated state showed enhanced resistance to staurosporine-induced apoptosis, which was even more robust after differentiation to neuron-like cells. Overall, the protective effects of differentiation, thermal preconditioning and ectopic Hsp72 expression were additive. The strong inverse correlation between cellular Hsp72 levels and susceptibility to apoptosis support the notion that Hsp72 acts as a significant neuroprotective factor, enabling post-mitotic neurons to withstand potentially lethal stress that induces apoptosis
- …