333 research outputs found

    Development and evaluation of a thermal model for haptic interfaces

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.Includes bibliographical references (leaves 147-152).The thermal interaction between the skin and an object is influenced by the thermal properties and initial temperatures of the skin and object, and by the contact force and surface roughness of the contact surfaces. This thermal interaction is modeled in this research which characterizes the transient thermal responses during contact. The thermal model was evaluated in psychophysical and physiological experiments by determining whether simulated thermal feedback generated based on the model was capable of conveying information to users that was similar to that provided by real materials, and by comparing the temperature responses of the skin predicted by the model and elicited by real materials. In order to obtain precise skin temperature measurements, an infrared thermal measurement system was designed to overcome the limitations imposed by thermal sensors and to determine the influence of contact pressure on the skin temperature responses during contact. The results from the psychophysical and physiological experiments validated the thermal model proposed in this research within the typical contact force range of manual exploration. A thermal display based on this model is able to convey thermal cues that can be used to perceive and identify objects as effectively as those provided by real materials.by Hsin-Ni Ho.Ph.D

    Influence of contact conditions on thermal responses of the hand

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.Includes bibliographical references (leaves 82-87).The objective of the research conducted for this thesis was to evaluate the influence of contact conditions on the thermal responses of the finger pad and their perceptual effects. A series of experiments investigated the thermal and perceptual effects of different contact conditions including contact force, contact duration, the object's surface temperature, and its surface roughness. The thermal response of the finger pad was measured using an infrared camera as the contact force varied from 0.1 to 6 N. It was determined that the decrease in skin temperature was highly dependent on the magnitude of contact force as well as contact duration. A second set of experiments investigated the effect of surface texture on the thermal response of the finger pad, and demonstrated, contrary to predictions, that a greater change in skin temperature occurs when the finger is in contact with rougher surfaces. The effect of varying surface texture on the perception of temperature was also investigated. The changes in temperature due to varying surface texture are perceptible, and demonstrate that the perception of surface roughness is not only influenced by changes in temperature, but in turn affects the perception of temperature. The final set of experiments examined the effect of varying the surface temperature of the thermal display on the perceived magnitude of finger force. Over the range of 20 to 38 'C, the surface temperature of the display did not have a significant effect on the perceived magnitude of force. The results of these experiments can be incorporated into thermal models that are used to create more realistic displays for virtual environments and teleoperated systems.by Jessica Anne Galie.S.M

    Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy

    Get PDF
    Cytolethal distending toxin (CDT) produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Among these three toxin subunits, CdtB is the toxic moiety of CDT with DNase I activity, resulting in DNA double-strand breaks (DSB) and, consequently, cell cycle arrest at the G2/M stage and apoptosis. Radiation therapy is an effective modality for the treatment of localized prostate cancer (PCa). However, patients often develop radioresistance. Owing to its particular biochemical properties, we previously employed CdtB as a therapeutic agent for sensitizing radioresistant PCa cells to ionizing radiation (IR). In this study, we further demonstrated that CDT suppresses the IR-induced autophagy pathway in PCa cells by attenuating c-Myc expression and therefore sensitizes PCa cells to radiation. We further showed that CDT prevents the formation of autophagosomes via decreased high-mobility group box 1 (HMGB1) expression and the inhibition of acidic vesicular organelle (AVO) formation, which are associated with enhanced radiosensitivity in PCa cells. The results of this study reveal the detailed mechanism of CDT for the treatment of radioresistant PCa

    Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure

    Full text link
    Quantum geometry - the geometry of electron Bloch wavefunctions - is central to modern condensed matter physics. Due to the quantum nature, quantum geometry has two parts, the real part quantum metric and the imaginary part Berry curvature. The studies of Berry curvature have led to countless breakthroughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect (AHE) in ferromagnets. However, in contrast to Berry curvature, the quantum metric has rarely been explored. Here, we report a new nonlinear Hall effect induced by quantum metric by interfacing even-layered MnBi2Te4 (a PT-symmetric antiferromagnet (AFM)) with black phosphorus. This novel nonlinear Hall effect switches direction upon reversing the AFM spins and exhibits distinct scaling that suggests a non-dissipative nature. Like the AHE brought Berry curvature under the spotlight, our results open the door to discovering quantum metric responses. Moreover, we demonstrate that the AFM can harvest wireless electromagnetic energy via the new nonlinear Hall effect, therefore enabling intriguing applications that bridges nonlinear electronics with AFM spintronics.Comment: 19 pages, 4 figures and a Supplementary Materials with 66 pages, 4 figures and 3 tables. Originally submitted to Science on Oct. 5, 202

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore