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Abstract

The objective of the research conducted for this thesis was to evaluate the influence of
contact conditions on the thermal responses of the finger pad and their perceptual effects.
A series of experiments investigated the thermal and perceptual effects of different
contact conditions including contact force, contact duration, the object's surface
temperature, and its surface roughness. The thermal response of the finger pad was
measured using an infrared camera as the contact force varied from 0.1 to 6 N. It was
determined that the decrease in skin temperature was highly dependent on the magnitude
of contact force as well as contact duration. A second set of experiments investigated the
effect of surface texture on the thermal response of the finger pad, and demonstrated,
contrary to predictions, that a greater change in skin temperature occurs when the finger
is in contact with rougher surfaces. The effect of varying surface texture on the
perception of temperature was also investigated. The changes in temperature due to
varying surface texture are perceptible, and demonstrate that the perception of surface
roughness is not only influenced by changes in temperature, but in turn affects the
perception of temperature. The final set of experiments examined the effect of varying
the surface temperature of the thermal display on the perceived magnitude of finger force.
Over the range of 20 to 38 'C, the surface temperature of the display did not have a
significant effect on the perceived magnitude of force. The results of these experiments
can be incorporated into thermal models that are used to create more realistic displays for
virtual environments and teleoperated systems.

Thesis Supervisor: Lynette A. Jones
Title: Principal Research Scientist in Mechanical Engineering
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1 Introduction

The focus of this thesis is to evaluate how the contact conditions between the

hand and an object influence the heat flux conducted out of the skin, and how these

effects can be incorporated into a thermal model. Thermal cues arise from the changes in

skin temperature that occur when an object is held in the hand, and assist in the

identification of objects. The resting temperature of the skin is typically higher than the

temperature of objects encountered in the environment, and the thermal cues used to

recognize objects by touch include the rate and amplitude of the change in skin

temperature. By understanding the influence of contact conditions on the thermal

response of the skin, more accurate thermal models can be developed. These in turn can

be implemented in thermal displays that are integrated into haptic devices so that a

holistic image of a remote object in a virtual environment or teleoperated robotic system

can be provided.

1.1 Haptic Sensory System

The haptic sensory system includes the tactile and proprioceptive senses, and is

involved in obtaining information about and acting on objects in contact with the skin.

The tactile sense refers to the sensory system that processes signals related to the

mechanical properties of objects, such as surface texture and compliance, as well as their

thermal characteristics. The proprioceptive sense encodes the position and orientation of

limbs with the respect to the body. Both tactile and proprioceptive senses play an

essential role in exploring the external environment.



The skin is the interface that interacts with an object and obtains sensory

information when in contact with an object. It is the largest organ in the body, with a

surface area of approximately 1.8 m2 and mass of 4.5 to 5 kg for the average adult human

(Tortora & Grabowski, 1993). There are two principal layers which comprise the skin.

The epidermis is 65 to 115 gm thick, and its cells are nourished by capillaries extending

from the upper layers of the dermis. The dermis is approximately 0.3 to 3 mm thick, and

contains sensory nerve endings which respond to touch and pressure, temperature

changes, and painful stimuli. The hypodermis is the subcutaneous tissue that is located

beneath the dermis, and attaches the skin to the underlying bone and muscle and supplies

it with blood vessels and nerves. The skin contains sweat glands, nerve endings, and

blood vessels, which allow it to guard against bacterial infection, protect underlying

muscles and organs, regulate temperature, and provide a surface for sensing and

interacting with the environment.

Thousands of sensory receptors are located throughout the skin and muscle tissue.

Mechanoreceptors, thermoreceptors, and nociceptors are types of sensory receptors that

respond to particular stimuli. Certain parts of the body and different areas of skin are

more sensitive than others, and have a higher density of receptors. Glabrous, or hairless,

skin found on the hands, lips, and soles of the feet is the most sensitive to touch.

(Gardner et al., 2000).

1.2 Thermal Sensation

Changes in skin temperature are encoded by cold or warm thermoreceptors, which

are located in the epidermal and dermal layers of the skin. Thermoreceptors are triggered

by changes in skin temperature, and transmit signals to the central nervous system that



can assist in object identification. Cold receptors are more numerous than warm

receptors, and the two types of afferent units vary with respect to their conduction

velocities. Cold afferent nerve fibers are faster than warm afferent fibers, with velocities

in the range of 10 to 20 m/s, as compared to 1 to 2 m/s for warm afferent fibers (Darian-

Smith, 1984). As the resting skin temperature is typically greater than that of objects

encountered in the environment, heat flux is conducted out of the skin on contact and the

cold thermoreceptors signal the decrease in skin temperature.

Thermoreceptors respond over a temperature range of 5-45 'C. Cold receptors

respond to decreases in temperature from 5-43 'C, while warm receptors discharge with

increases in temperature up to 45 'C (Kenshalo, 1976). Once temperatures rise above 45

'C or fall below 15-18 'C, there is a sensation of pain which is sensed by nociceptors, or

pain receptors (Darian-Smith & Johnson, 1977; Harrison & Davis, 1999). Both warm

and cold receptors fire spontaneously when the skin is in the thermally neutral zone

between 30-36 OC, but there is no thermal sensation for areas of skin up to approximately

1500 mm2. However, the thermal neutral zone is smaller when larger areas of skin

change in temperature (Kenshalo, 1976). Outside of the thermal neutral zone, thermal

sensation is typically triggered by activity in one type of receptor.

Perceiving a variation in temperature depends on several factors including the

amplitude and rate of temperature change, the initial temperature of skin, and the area of

the body site stimulated. On the thenar eminence at the base of the thumb, it is possible

to perceive a temperature difference of 0.02-0.07 'C between two cooling pulses, and

0.03-0.09 'C between two warming pulses (Johnson et al., 1973; Johnson et al., 1979).

When the skin of the thenar eminence is maintained at 33 'C, the differential threshold



for the perception of warming is 0.20 'C at a rate of 2.1 'C/s, and for cooling is 0.11 oC

at a rate of 1.9 °C/s (Stevens & Choo, 1998). If the skin temperature changes at a very

slow rate of 0.5 °C/min, people do not detect the change in temperature (Stevens, 1991),

but at faster rates small increases and decreases in skin temperature can be detected.

When the initial temperature of the skin is maintained above 36 OC, the sensation is one

of continuous warmth, and when the skin is maintained below 30 'C, continuous cold

sensation is perceived.

Thermal stimulation evokes sensations of warmth or cold, but the spatial features

of the stimulus such as the size and shape can not be accurately resolved. The poor

spatial resolution of thermal stimuli is due to the summation of intensity over area. An

increase in the area of stimulation affects the perceived intensity of the stimulus, and

diminishes the ability to perceive differences within the area of stimulation. For cold

stimuli, the perceived intensity of cold increases with increasing stimulation area

(Greenspan & Kenshalo, 1985; Kenshalo et al., 1967; Stevens & Marks, 1979). For

warm stimuli, the effect of the area of stimulation on sensory thresholds becomes less

important as the degree of heating increases and approaches the pain threshold (Stevens

& Marks, 1971). Spatial summation may also occur when separate areas on opposite

sides of the body are thermally stimulated at the same time (Marks et al., 1976; Rozsa &

Kenshalo, 1977). The thresholds for both warm and cold stimuli diminish when stimuli

are presented at symmetric sites simultaneously. Yet, the threshold remains the same if

two asymmetric sites are stimulated simultaneously (Hardy & Oppel, 1937; Rozsa &

Kenshalo, 1977).



1.3 Development of Thermal Displays

Thermal displays are used to present thermal cues to the skin on the hand to assist

in the identification of a remote object in a virtual environment or teleoperated robotic

system. Peltier devices, also called thermoelectric modules (TEMs), are the most widely

used thermal stimulators in thermal displays. Peltier devices operate by creating a

temperature difference at the junction of two dissimilar conductors in contact by passing

a DC current through the circuit. The direction of heat flowing between the substrates is

dependent on the current direction, and temperature differences are generated between

the substrates. The magnitude of the temperature difference and the rate of change are

controlled by varying the amplitude of the current passing through the Peltier device.

The heating and cooling of thermal displays is typically controlled using a closed-

loop circuit with a proportional-integral (PI) or proportional-integral-derivative (PID)

control loop (Ino et al., 1993; Yamamoto et al., 2004). Contact temperature sensors such

as thermocouples, thermistors, or RTDs are used to provide temperature feedback to the

controller. Temperature sensors with low thermal mass and small dimensions are

typically chosen for thermal displays as they reach thermal equilibrium quickly and

facilitate high-frequency temperature control. A temperature sensor's stability is also an

important factor to consider. The working temperature range of a thermal display is

usually around 20 'C, so the sensitivity of a temperature sensor is an important factor in

its selection. RTDs are typically the most accurate among RTDs, thermistors, and

thermocouples, but thermistors have the best sensitivity.

Non-contact thermal measurement devices are being used to overcome some of

the limitations of contact temperature sensors. Thermistors and thermocouples give



localized point measurements, and do not provide a complete image of the thermal

distribution across the contact area. Infrared cameras have been used to record the

temperature distribution across the finger pad which has permitted a more realistic

evaluation of thermal displays (Ho & Jones, 2008). When using an infrared thermal

imaging system, any objects that lie in the path between the camera and the target object

must be made from materials that are infrared transmissible. Since Peltier devices do not

meet this requirement, thermal imaging cameras are not used in thermal displays.

Infrared lamps and fans have been used in thermal displays to convey thermal

information about the environment. The Thermopad was designed for virtual reality

applications, and used infrared lamps and fans to warm and cool the user, while Peltier

devices induced changes in skin temperature (Dionisio et al., 1997). Lecuyer et al.

(2003) devised a system for visually-impaired people in a virtual reality environment,

which used infrared lamps to convey a feeling of warmth from the sun to the user.

The applications of thermal displays typically involve conveying thermal

information to the user about real or virtual objects. Thermal information can be

delivered through contact methods, such as Peltier devices to convey the thermal

response of touching a real or simulated material, or non-contact methods such as

convection or radiation, which are usually involved in larger-scale virtual environments.

MacLean and Roderick (1999) designed a platform called "Aladdin", which integrates a

haptic display into a commonplace manual control device, a doorknob. The system

consists of a haptic knob with a torque and thermal display. The thermal display was

created in the body of the knob with a thermoelectric module, which was programmed to

adjust the display surface at least 15 oF above and below ambient temperature within 30



seconds. The TEM was embedded in a thermally conductive aluminum body with a

smooth heat sink on the proximal knob surface to remove heat from the hot side of the

Peltier device. The knob was designed to encourage a fingertip grasp on the front,

controlled surface of the thermal display. Two thermocouples were used to provide

temperature feedback to the controller. One thermocouple was mounted on the heat sink

side, and the other was mounted on the controlled surface to complete the feedback loop.

A suggested application of this device is a smart doorknob, which identifies a person and

allows for keyless entry.

Yamamoto et al. (2004) focused on the control of a thermal tactile display based

on the prediction of contact temperature during the initial contact period, which is when

the most rapid thermal change occurs upon contact. A contact pad consisted of a Peltier

device with a grooved surface, in which a thermocouple was mounted to provide

temperature feedback to a PID controller regulating the surface of the contact pad. The

contact pad was installed on a radiator in which an infrared sensor was mounted to detect

when the finger made contact with the pad. The sensor consisted of an infrared LED and

photodiode. The initial temperature of the finger was recorded by a radiation

thermometer, and fed into a thermal model in the processor. When the infrared sensor

detected that contact had been made with the pad, the controller set the Peltier device to

the predicted contact temperature based on the thermal model. The goal of this system

was to simulate the thermal conditions that occur at the moment of contact in order to

provide a realistic image of the object.

Hedin et al. (2006) developed a tactile display based on thermal input to assist

blind people in identifying the presence and location of humans in the surrounding



environment. A prototype device consisted of an infrared camera mounted on top of a

tactile array on a hand-held frame. The tactile display imaged the output of the infrared

camera, where each pixel of the tactile display was a binary up or down cue based on the

threshold of the skin temperature detected by the infrared camera. Five subjects were

tested with the device, and asked to identify static features and dynamic movements at a

distance of 10 feet. The results showed that the subjects who were well versed in the use

of Braille were able to reliably resolve the output of the tactile display.

1.4 Thermal Models

Thermal models are used to predict the changes in skin temperature when the

hand makes contact with an object. The resting temperature of the skin on the hand

ranges from 25 to 36 'C (Verrillo et al., 1998), and is typically higher than the

temperature of objects encountered in the environment. Transient heat conduction occurs

upon contact, where heat flows from the hand to the object, and causes the skin

temperature on the hand to decrease. The rate and magnitude of skin temperature

decrease depends on a number of factors, including the initial temperatures, conductivity

and heat capacity of the skin and the object.

Most analytical thermal models that have been created are based on the Pennes

bioheat equation (1948), with the exception of a model proposed by Benali-Khoudja et al.

(2003) which was developed using an electrical analogy. The bioheat equation accounts

for the energy balance within the tissue of metabolic heat generation and blood perfusion

with thermal diffusion.

dT
pc = V(kVT) + (pc)b ob(T, - T)+ qdt



where pc is the heat capacity of the tissue, T is the temperature of the tissue, k is the

thermal conductivity of the tissue, (pc)b is the heat capacity of blood, 0b is perfusion rate

of blood, Ta is the temperature of the arterial blood, and qm is the metabolic heat

generation. The bioheat equation describes a conduction-dominated transient heat

transfer process, where the metabolic heat generation is assumed to be homogenously

distributed throughout the tissue and the effect of blood perfusion is homogenous and

isotropic. The bioheat equation is commonly used as the foundation for bioheat transfer

due to its simplicity and accuracy with experimental results. Thermal models which use

the bioheat equation predict the interaction between the skin and the object based on

different assumptions and boundary conditions. In these models, the initial temperatures

of the skin and contact material and the effects of blood perfusion have generally been

considered.

Two thermal models of the finger were proposed for virtual reality applications by

Bergamasco et al. (1997) who described the thermal contact between the finger and an

object. A partial differential equation (PDE) model and an ordinary differential equation

(ODE) model were created to predict the transient thermal gradient perpendicular to the

surface when the finger rested in free air and when the finger made contact with an

object. The PDE model for the finger in free air was based on the one-dimensional

bioheat equation with the assumption that the thermal properties of the tissue were

spatially uniform. The PDE model for the finger in contact with an object assumed a

one-dimensional conduction scenario, where the object was assumed to be a semi-infinite

body, and there was no heat exchange at the tissue boundary, which was separated by a

distance from the interface. The ODE model did not consider the tissue to have uniform



thermal properties, but instead divided it into 10 layers, each with different material

properties. The ODE model accounts for the heat storage within each layer and the

continuum of one-dimensional heat conduction from layer to layer at interfaces for both

free air and contact conditions.

Kron and Schmidt (2003) adapted Bergamasco et al.'s (1997) ODE model, and

applied it to three layers of skin based on anatomical structure, which included the

epidermis, dermis, and hypodermis. They developed a model that was able to predict the

temperature distribution inside the fingertip when it was in free air, and also when it

made contact with an object. Kron and Schmidt (2003) accounted for blood perfusion

and metabolic heat generation in the dermis and hypodermis.

Yamamoto et al. (2004) implemented a model-based thermal display to simulate

the thermal conditions at the initial stage of contact. In this model, the object and the

skin were considered to be homogenous bodies with uniform initial temperatures.

Thermal contact resistance was ignored since the model was being used solely to predict

the thermal behavior at the moment of contact. When thermal resistance is zero, the

temperatures of both the skin and the object become the same temperature at the moment

contact occurs. The thermal display presented the predicted contact temperature, and

allowed the skin to undergo the same thermal sensation as if it were touching a real

object. Yamamoto et al. (2004) conducted a series of experiments to evaluate the

performance of their model-based thermal display. Subjects were asked to identify

simulated materials (polystyrene, wood, ceramic, and brass) based on thermal cues while

touching the corresponding real materials with the other hand. The mean recognition rate

was 74% which was satisfactory to show that the thermal display could present cues that



are as effective as those encountered normally for identifying the material composition of

objects.

Citerin et al. (2006) implemented a finite element thermal model to overcome the

limitations of their analytical model, which did not account for the complex structure of

the finger pad and the thermal resistance between the finger and the contact material.

Both the analytical and finite element models were used to predict the temperature

changes during different stages of contact, and superimposed to achieve an overall

change in temperature for the entire contact duration. At the initial stage of contact, the

skin and the object were assumed to be semi-infinite bodies in contact with no thermal

resistance, and the interface temperature was solved with an analytical model. The

remainder of the contact period included the effect of thermal flow and thermal

resistance, and the interface temperature was solved using finite element methods.

Ho and Jones (2008) developed a thermal model based on a transient thermal

process, where heat flux is transferred across the interface between the skin and object by

conduction and flows through a thermal contact resistance. The skin and the object can

both be modeled as semi-infinite bodies, if the contact time is short enough for the semi-

infinite body model to be valid (Ho & Jones, 2006b). If this assumption is met, then the

thermal model of the heat flux conducted out of the skin to the object can be described as

follows:

q"(t) = kski,, A e as?'erfc(B afl)}

S (Tskini Tobjecti kB 1 ( c)s 1i
A B I + 1/2A= R B=(k)

kski,,R kskinR 1blect



where k is the thermal conductivity (W/m K), p is the density (kg/m 3), c is the specific

heat ((J/kg K), a is the thermal diffusivity (m2/s), t is the time (sec), R is the thermal

contact resistance (m2 K/W), and q" is the heat flux (W/m 2). The thermal contact

resistance is based on the model proposed by Yovanovich (1981), which takes into

account the mechanical, thermophysical, and surface properties with no fluid in the

interfacial gap. The thermal contact resistance, R, is given by:Aa P
R = 1.25k s  H 0.95

where ks is the harmonic mean thermal conductivity of the interface, Rq is the effective

root-mean-square surface roughness, and Aa is the effective absolute average asperity

slope, H is the microhardness of the softer material (which in this case is the skin), and P

is the contact pressure. In this model, the heat flux exchanged during contact is a

function of time, thermal contact resistance, and the initial temperatures and thermal

properties of the skin and the object.

1.5 Objectives of Research

The objectives of the research conducted for this thesis were to understand the

thermal response of the finger pad and how these responses influenced the perceptual

changes that occur under different contact conditions. The thermal response of the finger

pad was measured as the contact force changed from 0.1 to 6 N as well as a function of

the surface texture in contact with the finger. The effect of varying surface texture on the

perception of temperature was also investigated. In the final set of experiments the effect

of varying the surface temperature of the thermal display on the perceived magnitude of

the finger force was studied.



The thesis is organized in the following way. In Chapter 2, an experiment

designed to understand the effect of contact pressure on the thermal response of the hand

is described. In this study, an infrared thermal imaging system was used to measure key

parameters including the contact area and temperature distribution on the finger pad

during contact. Chapter 3 describes an experiment conducted to determine the effect of

surface roughness on the thermal response of the finger pad. In Chapter 4, a

psychophysical experiment is described that determined how surface roughness affects

the perception of temperature changes on the finger.

In Chapter 5, a thermal display was developed using two Peltier devices to

examine whether contact temperature influences the perception of applied force. One

finger generated a target force on a thermal display whose surface temperature varied.

The opposite finger simultaneously made contact with a thermal display whose surface

temperature was maintained at 32 'C, and the subject was asked to match the force

applied by two fingers. The goal of this experiment was to determine how the perception

of force is affected by changes in temperature.

Chapter 6 provides a summary of the conclusions of this research as well as

potential areas of future work.



2 Effect of Contact Pressure on Thermal Responses of the
Hand

A change in skin temperature occurs when the finger generates a force against an

object and the finger pad is compressed. Compression of the finger pad affects

temperature in two ways: first, by increasing the contact area which allows for a higher

heat flux (Greenspan & Kenshalo, 1985), and second, by restricting blood flow in the

capillary network beneath the skin's surface which should contribute to a decrease in

temperature of the finger pad (Mascaro & Asada, 2001). When the contact area between

the finger pad and an object increases, there is a greater surface area for heat transfer.

The relationship between contact area and force is dependent on the viscoelastic

properties of the finger pad. Most of the change in contact area occurs at low forces

before the load reaches 1 N when the finger pad is relatively compliant (Serina et al.,

1997). The collapse of blood vessels at high contact forces may also affect the skin

temperature as blood flow is driven away from the contact area into the capillaries under

the nail bed. At low contact forces up to about 0.5 N, there is capillary perfusion of the

finger pad. At higher contact forces, there is a progressive decrease in blood flow which

is reduced by 70% at 3 N as compared to that occurring at 0.5 N (Jay & Havenith, 2006).

When an object is held in the hand, a transient thermal response occurs which is

dependent on the contact conditions which influence the heat flux conducted out of the

skin during contact. The aim of this experiment was to investigate how contact pressure

affects the change in temperature of the finger pad. Contact pressure was computed as a

function of the contact force and contact area of the finger pad. The contact forces



ranged from 0.1 to 6 N which are within the range of forces used in grasping tasks and

manual exploration of objects (Shimoga, 1993; Sutter et al., 1989).

2.1 Method

Subjects. Ten normal healthy adults volunteered to participate in this study. There were

seven males and three females ranging in age from 19 to 51 years old, with a mean of 27

years old. The subjects had no known abnormalities of the tactile, proprioceptive, or

thermal sensory systems and no history of peripheral vascular disease. All subjects

reported that they were right handed. This research was approved by the MIT Committee

on the Use of Humans as Experimental Subjects.

Apparatus. An infrared based camera system shown in Figures 2-1 and 2-2 was used to

measure the temperature of the right index finger pad as subjects made contact with a

barium fluoride (BaF2) window. The BaF2 window (Crystan Ltd.) was 43 mm in

diameter and 10 mm thick. The BaF2 material was chosen because it is transparent to

both infrared radiation and visible light. It also has a high contact coefficient and high

stiffness as seen in Table 2.1.

Table 2.1. Properties of BaF 2 contact material

Material Property BaF2

Conductivity k [W/mK] 11.7

Density p [kg/m3 ] 4890

Specific heat c [J/kgK] 410

Contact coefficient (kpc)1/ 2 [J/m 2 sl/2k] 4843

Young's Modulus E [GPa] 53.1



Figure 2-1. The experimental set-up included a separate monitor to display target and

measured force values to the subject.

Figure 2-2. Experimental set-up showing the thermal camera mounted in line with the

beamsplitter, and BaF2 window. The 6-axis force transducer is located in the same fixture

as the BaF2 window, closer to the thermal camera. The LEDs are mounted in between

the beamsplitter and the force transducer. The digital camera is mounted above.



The thermal camera (A40M, FLIR Systems) used to measure the temperature of

the finger pad was connected to a computer via a Firewire cable, and controlled using a

software package provided by the manufacturer (ThermaCam Researcher SR-3, FLIR

Systems). The spatial resolution of the image recorded by the thermal camera was 400

gm, which is sufficient for capturing thermal information on the finger pad (Ho & Jones,

2006a).

As shown in Figure 2-2, a beamsplitter made of germanium (Ge) with anti-

reflective coating, was used to separate the infrared radiation and visible light. The

beamsplitter measured 32 mm in diameter and was 3 mm thick. A digital camera (EOS

D60, Canon) with a 100 mm macro lens (EF 100 mm, Canon) was used to take images of

the finger in contact with the window. It was controlled by a manual remote control, and

images were stored on a CF card, which were moved onto the computer for processing

after completion of all of the trials. Two LEDs (Luxeon III Emitter, LumiLEDs) were

attached to a thin clear acrylic structure in between the beamsplitter and BaF2 window to

provide additional light to the finger pad for the digital image capture as seen in Figure 2-

2. The LEDs were connected to a DC power supply (Model E3632A, Agilent

Technologies).

A 6-axis force transducer (Nano 43, ATI Industrial Automation) with a 20 mm

hole in the center was mounted next to the BaF2 window, and measured the force exerted

by the finger without obstructing the infrared and visible light (Ho & Jones, 2007, 2008).

Force was sampled at a rate of 80 Hz by a data acquisition card (NI PCI-6023E, National

Instruments) inside the computer. A separate monitor was used to graphically display the

target and measured force values to the subject. The output of the force transducer was



processed by the data acquisition card, and sent to the monitor connected to the computer.

The fixtures that held the force transducer and window, as well as the beamsplitter, were

made with a rapid prototyping system (Viper Laser Stereolithography Forming Center,

3D Systems).

Four thermistors (457 pm diameter, 3.18 mm length; Model 56A1002-C8, Alpha

Technics) with a sampling rate of 1 Hz were used to measure the temperature of the

finger pad, BaF2 window, beamsplitter, as well as the ambient temperature. The

thermistors were connected to two data acquisition units (Model 34970A, Agilent

Technologies), which were connected to the computer via a USB/GPIB interface (Model

82357A, Agilent Technologies) and controlled using the Labview 8.5 program as seen in

Figure 2-1.

A recirculating chiller (Model 1167P, VWR International) was used to maintain

the skin temperature at 33 'C at the start of the experiment, and between trials prior to

making contact with the window. The recirculating chiller was connected to a spiral

folded tube (4.8 mm ID, 7.9 mm OD) inside of a delrin fixture. A 2 mm thick copper

plate was placed on top of the spiral folded tube to improve temperature uniformity of the

surface. A 3.2 mm thick rubber pad was positioned on top of the copper plate for added

comfort when subjects placed their hands on it to maintain skin temperature.

Procedure. Upon arrival, each subject's finger pad was cleansed with a cotton swab of

isopropyl rubbing alcohol (70%) (CVS pharmacy). A thermistor was glued on the right

index finger pad on the edge of the contact area using a biocompatible cyanoacrylate

(Liquid Bandage, Johnson & Johnson). Medical tape (Nexcare) was used to secure the

thermistor leads along the hand and wrist as shown in Figure 2-3. Subjects' initial skin



temperatures ranged from 29.3 to 35.6 'C, with an average value of 33.0 'C. The room

temperature was maintained at approximately 23 'C, and measured with a thermistor in

free air.

Subjects initially placed their right hands on the chiller pad to bring them to a

preset temperature of 33 'C. A series of auditory cues generated in the Labview program

paced the sequence of events. At the first sound cue, subjects removed their right hand

from the chiller pad, and placed their right index finger in a holding position. At the

second sound cue, subjects made contact with the contact surface and generated a force

that matched the target force displayed on the monitor by pushing against the BaF2

window with their finger. The monitor displayed the target force as a white line and the

force the subject was generating as a red line. The two forces were also displayed on the

screen below the graph as a digital readout. A third sound cue was heard after 10 or 20

seconds to indicate that the subject should remove their finger from the BaF2 window and

place it back on the chiller pad for at least one minute to maintain skin temperature.

Labview recorded the skin, window, beamsplitter, and ambient temperature at a sampling

frequency of 1 Hz, which was sufficient to capture the change in temperature. This

sequence of events was repeated for each force value and contact duration.

Nine contact forces were produced (0.1, 0.25, 0.35, 0.5, 1.0, 1.5, 2, 4, 6 N), and

there were two contact durations of 10 and 20 seconds. Two trials were performed for

each 10-second contact duration, and one trial was performed for the 20-second contact

duration. A thermal image and a digital camera image were manually taken when the

subject first matched the required target force, and at the end of the contact period. The

thermal camera was controlled using a manual trigger in the ThermaCam Researcher SR-



3 software program (FLIR Systems), and the digital camera image was taken with a

manual remote.

Figure 2-3. A thermistor is glued to the finger pad to measure skin temperature (left).
Medical tape was used to secure the thermistor on the hand and along the wrist as the

finger made contact with the BaF2 window in the experimental apparatus (right).

2.2 Results

Thermal images were used to determine the change in contact area of the finger

pad on the BaF2 window as a function of force. The perimeter of the contact area was

manually outlined on the thermal image in ThermaCam Researcher SR-3 software (FLIR

Systems, Inc.). The images were converted to binary black and white scale in Adobe

Photoshop CS (Adobe Systems, Inc.) and then processed in Matlab (MathWorks, Inc.) to

determine the contact area. Figure 2-4 shows a characteristic set of thermal images from

one subject.



Figure 2-4. Thermal images for one subject across force levels ranging from 0.1 to 6.0

N. Left to right, first row: 0.1, 0.25, 0.35 N; second row: 0.5, 1.0, 1.5 N; third row: 2.0,
4.0, 6.0 N.

The relation between force and the mean contact area is shown in Figure 2-5. A

logarithmic function fitted to the data accounted for 90% of the variance. As can be seen

in the figure, there is a rapid increase in contact area at low forces with a 86 mm2 increase

in contact area between 0.1 and 2 N. Over 70% of this change occur at contact forces

below 1 N.
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Figure 2-5. Relation between contact force and mean contact area averaged across 10
participants. The error bars represent the standard error of the mean. The logarithmic
function fitted to the data is also shown.

The thermal images in Figure 2-4 visually depict what the graph in Figure 2-5

shows, namely that the contact area increases rapidly at low force levels, and appears to

reach a maximum value at around 2 N when the finger pad is fully compressed.

The change in skin temperature during contact was computed as the difference

between the initial skin temperature as measured by a thermistor on the finger pad and

the average temperature across the finger pad calculated from the thermal image taken at

the end of the contact period. The temperature of the finger pad on the thermal image

was evaluated based on the total energy detected (Utot) by the thermal camera. The

uncalibrated object signal is a measure of the total energy detected, including radiation

from the atmosphere and external optics, such as the Ge beamsplitter and BaF2 window.



Based on radiosity concepts, it is possible to determine the target temperature of the

finger pad as a function of the energy received by the camera using the thermal camera

calibration curve. Equation (1) shows the contribution of the emissivity, transmissivity,

and reflectivity of the window, beamsplitter, and ambient conditions:

Uto, = eobjTIT2Uobj + (1- C) i 2Uamb U2 U 2 + E T2 U1 + P2 Uamb + P 2 Uamb (1)

where f is the emissivity, t is the transmissivity, p is the reflectivity, and U is the energy.

Subscripts denote total (tot), object (obj), ambient (amb), contact material (1), and

beamsplitter (2).

The energy is related to the temperature based on the thermal camera calibration

curve, which has unique R, B, F values for each individual camera. The relationship is

shown in Equation (2):

Uobj R (2)

e * - F

where Uobj and Tobj represent the energy and temperature of the finger pad, respectively.

The mean decrease in skin temperature as a function of contact force is shown in

Figure 2-6 for a contact duration of 10 seconds. The decrease in temperature was greatest

at forces of 0.25 and 0.35 N and 4.0 and 6.0 N, and was smaller for forces between 0.5

and 4.0 N. The decrease in temperature averaged 5.5 'C across the nine force values.
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Figure 2-6. The decrease in skin temperature as a function of force after 10 seconds of
contact averaged across 10 participants. The error bars represent the standard error of the
mean.

A repeated-measures ANOVA with contact force as the within factor and change

in temperature as the dependent variable indicated that there was a significant difference

in temperature as a function of force, F(3, 27) = 3.808, p = 0.021 with Huynh-Feldt

corrected df. The decrease in skin temperature was highly dependent on the magnitude

of the contact force.

The change in skin temperature was also measured by the thermistor attached on

the perimeter of the contact area, which was sampled at 1 Hz. The plot in Figure 2-7

shows the time course of the temperature data for each force level, averaged across ten

subjects. The mean change in temperature recorded by the thermistor is seen in Figure 2-

8.
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bars represent the standard error of the mean.
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A repeated-measures ANOVA of the thermistor data with contact force and

contact time as the within factors and change in temperature as the dependent variable

indicated that there was a significant difference in the change of temperature as a function

of contact force (F(5, 43)= 2.592, p= 0.041) and contact time (F(1, 9)= 5.155, p= 0.049)

with Huynh-Feldt corrected df. The decrease in skin temperature was highly dependent

on the magnitude of the applied contact force and the duration of the contact time.

The thermistor data in Figure 2-8 show a similar trend to the thermal image data

in Figure 2-6, but with a lower overall average change in temperature of 3.1 C across the

range of forces. This indicates that the thermistor was not able to detect the full extent of

the change in temperature even though it was located on the perimeter of the contact area.

The temperature gradient from the center of contact outward to the perimeter of the

contact area is captured in Figure 2-9. The temperatures are plotted along the line drawn

across the contact area of the finger pad in the proximal to distal direction. The thermal

image illustrates the localized nature of the change in skin temperature across the contact

area.
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A plot of the temperature gradient across the contact area on the finger pad
contact at a force of 0.1 N.

The contact pressure was calculated from the individual contact areas at each

contact force, and averaged across all 10 participants. Figures 2-10 and 2-11 show the

relationship between the decrease in skin temperature and contact pressure for thermal

image and thermistor data, respectively.
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Figure 2-10. Decrease in skin temperature (measured from thermal images) as a function
of contact pressure for 10 subjects after 10 seconds of contact. The error bars represent
the standard errors of the mean.

00
oL

P3

E
0
C
c0
C

0
(,
(,

0
I..
U

5.0 -

4.0 -

3.0 -

2.0 -

1.0 -

0.0

Contact Pressure (kPa)
Figure 2-11. Decrease in skin temperature (measured from
contact pressure for 10 subjects after 10 seconds of contact.
standard errors of the mean.

a thermistor) as a function of
The error bars represent the



The contact pressure was calculated by dividing the contact force by the contact

area of each subject's finger pad. As expected, the decreases in skin temperature as a

function of contact pressure shown in Figures 2-10 and 2-11 are similar to the changes in

temperature as a function of contact force. In Figure 2-10, the contact pressures for the

corresponding nine forces were 1.41, 2.71, 3.19, 3.68, 6.82, 9.05, 11.71, 24.45, and 35.29

kPa. The greatest changes in temperature occurred between 2.71- 3.19 kPa and 24.45-

35.29 kPa. The greater decreases in temperature found in the thermal image data in the

2.71- 3.19 kPa range were not present in the thermistor data presumably because of the

thermistor's limitations in detecting the full extent of temperature decrease across the

contact area. A comparison of the mean decrease in skin temperature as measured by the

thermal camera and the thermistor after 10 s of contact across the 10 participants is

shown in Figure 2-12.
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Figure 2-12. The mean decrease in skin temperature based on thermal image and
thermistor data. The error bars represent standard errors of the mean.



2.3 Discussion

A number of thermal models have been developed to predict the change in skin

temperature during contact with an object with the goal of incorporating thermal

feedback into haptic devices. Most of these models are based on the bioheat equation

formulated by Pennes (1948) each with different assumptions and boundary conditions.

Current models have considered the effects of blood perfusion and the thermal and

mechanical properties of the skin and contact material (Bergamasco et al., 1997; Citerin

et al., 2006; Deml et al., 2006; Ho & Jones 2006a; Yamamoto et al., 2004; Yang et al.

2008). Ho and Jones (2006a) account for the thermal and mechanical properties of the

skin and contact material, in addition to other factors such as contact pressure and

thermal contact resistance.

The thermal model proposed by Ho and Jones (2006a) predicted that skin

temperature would decrease as a function of contact pressure. A comparison between the

theoretical predictions and the decreases in skin temperature measured using the thermal

camera is shown in Figure 2-13. At contact pressures above 12 kPa, the model is very

accurate, but at lower contact pressures it tends to underestimate the decrease in

temperature. As seen in Figure 2-13, for contact pressures greater than 12 kPa

(corresponding to a force of 2 N), the model predicts the measured temperature values to

within 0.25 'C. For contact pressures less than 12 kPa, the theoretical prediction follows

the general trend of the temperature data, but underestimates the decrease in temperature

by an average of 2.7 'C. Ho and Jones (2008) examined contact pressures ranging from

0.73 to 10.98 kPa, which corresponds to a range of contact forces from 0.1 to 2 N. Their

results are similar in that the model underestimated the decrease in temperature at contact



pressures below 3.14 kPa. For contact pressures larger than 5.90 kPa, the difference

between the model and measured data was within 1 "C (Ho & Jones, 2008).
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One possible explanation for the difference between the theoretical predictions

and the experimental results may be the estimation of thermal contact resistance at low

contact pressures. Thermal contact resistance is estimated based on the model proposed

by Yovanovich (1981), which assumes that no fluid is present in the interfacial gap, and

the resistance is a function of mechanical, thermal, and surface properties of the objects

in contact. The Yovanovich model accounts for the effective root-mean-square surface

roughness and absolute average asperity slope of the contact materials. Ho and Jones

(2006a) measured these values for the fingerpad and the BaF2 contact material, and

implemented those values in their model. The Yovanovich (198 1) model also includes



the microhardness of the softer material, which in this case is the skin. The

microhardness value used in the Ho and Jones model (2006a) was 0.1225 MPa as

reported by Dellon et al. (1995). The discrepancy between the predicted and measured

results suggests that the model used for the estimation of thermal contact resistance may

not be relevant for the range of contact pressures assessed in this experiment (1.41-35.29

kPa). The Yovanovich model (1981) is based on contact between two rigid bodies,

where the ratio of contact pressure to microhardness is 1E-6 to 2E-2. In this study, the

contact is between a rigid body and a soft tissue, where the ratio of contact pressure to

microhardness of the skin was in the range of 0.01 to 0.3.

The thermal image data also indicated that there was a large decrease in skin

temperature at low contact forces between 0.25 N and 0.35 N, which was not expected,

and was not captured in the thermistor data. The vascular anatomy of the fingertip may

provide insight into a plausible explanation for these results. The nail bed is richly

vascularized with blood flowing from the digital arteries into the arterioles through a

capillary network and back out through the venules and into the digital veins. The

arteries that feed the nail bed are located above the bone, which is connected to the

fingernail via collagen fibers. Consequently, the arteries above the bone are protected

during contact at low forces, while the veins that drain the nail bed are located below the

bone, closer to the palmar surface. The veins are also generally larger and more

compliant than arteries, which make them more susceptible to collapse under pressure.

As pressure is applied to the fingertip, the veins collapse and cause blood to pool in

capillaries beneath the nail (Smith et al., 1991). The decrease in temperature of the finger

pad would be expected to increase when the blood flow is constricted in this way.



There are two distinct zones of capillaries in the fingertip: the proximal reddening

zone capillaries which are protected by the bone and nail structure, and the distal

whitening zone capillaries that are susceptible to collapse by applied pressure. The nail

bed capillaries at the distal end of the fingertip are not protected by the bone. As the

pressure increases, these capillaries collapse and have a whitening effect on the finger

nail (Mascaro & Asada, 2000). The resulting thermal effect would be a greater decrease

in skin temperature during contact.

Thermal images indicated that at low forces, subjects tended to press against the

contact material with the distal portion of their fingertip, as seen in the characteristic set

of images in Figure 2-4. The greater decrease in skin temperature at these lower forces

suggests the capillary network may have collapsed in the distal palmar surface of the

fingertip. This would explain the greater decrease in temperature at the 0.25-0.35 N

contact force, and at high contact forces between 4-6 N, where capillary perfusion is not

present at all in the proximal or distal regions. In addition, the thermistor located on the

perimeter of the contact area would not have been able to detect the localized change in

temperature due to the collapse of capillaries on the contact surface.

The decrease in skin temperature stabilized within 2 seconds of contact with a

temperature range of 4.3-6.5 'C for contact pressures up to 35 kPa. These results, shown

in Figure 2-7, are comparable to results reported by Ino et al. (1993) and Yamamoto et al.

(2004), who also showed a rapid decrease in skin temperature during the first 2 seconds

immediately following contact, followed by a much slower decrease in temperature.



2.4 Conclusion

The results of this experiment indicate that contact pressure and contact duration

have a significant effect on changes in skin temperature. The thermal response of the

finger pad was evaluated over a comprehensive range of contact forces from 0.1 to 6 N.

Current thermal models were unable to accurately predict the thermal response across the

entire range of contact pressures, but gave accurate results for higher contact pressures.

The infrared thermal measurement system was able to detect the temperature gradient

across the finger pad during contact, and confirmed the localized nature of the thermal

responses of the skin during contact. The thermistor data confirmed the general trend of

data recorded by the infrared camera, and demonstrated the limitations of point contact

sensors.



3 Effect of Surface Roughness on Thermal Response of the
Hand

The purpose of this experiment was to examine how the surface roughness of an

object influences the heat flux conducted out of the skin during contact. Several studies

have investigated the effect of surface roughness on tactile sensation, but the thermal

response has rarely been evaluated. Simulations based on the Ho and Jones (2008)

thermal model indicate that skin temperature will change as a function of surface

roughness, and that the decrease in skin temperature will be greater when the hand is in

contact with a smoother surface. Quantitative studies of the sensory perception of

roughness use surfaces such as sandpaper, metal gratings, and fabrics that have features

with a defined spatial period. Smooth surfaces are defined as having smaller spatial

periods, and rough surfaces have larger spatial periods. Neurophysiological experiments

routinely use plastic surfaces with embossed, tetragonal dot patterns, in which each dot

has the shape of a truncated cone (Connor et al., 1990). The spatial periods that have

been investigated in embossed plastic stimuli range from 0.8 to 6.5.mm (Connor et al.,

1990). Rectilinear arrays of truncated pyramids have also been used as test stimuli

(Hollins et al., 2001). Truncated pyramid patterns are produced by photolithography and

wet chemical etching on silicon wafers, and achieve spatial periods ranging from 0.16 to

3.2 mm (Hollins et al., 2001).

The test stimuli used in this set of experiments consist of a rectilinear array of

truncated pyramids, similar to the spatial patterns used by Hollins et al. (2001).

However, the material and method of machining are different. Copper was chosen as the

surface material because of its high contact coefficient and thermal conductivity, low



deformation, resistance to moisture from the finger pad, and machinability. A process

using wire electrical discharge machining (EDM) was used to create the desired

geometry. The range of spatial periods that was machined was limited by the spark gap

and wire diameter of the EDM system. The spatial periods of the copper surfaces range

from 0.8 to 3.0 mm. The thermal response of the finger pad was evaluated upon contact

with six stimuli of varying spatial period.

3.1 Method

Subjects. Ten normal healthy adults volunteered to participate in this study. There were

six males and four females ranging in age from 20 to 51 years old, with a mean age of 30

years old. Six of the ten subjects participated in the previous experiment involving

contact pressure. The subjects had no known abnormalities of the tactile, proprioceptive,

or thermal sensory systems and no history of peripheral vascular disease. The subjects

reported that they were right handed. This research was approved by the MIT Committee

on the Use of Humans as Experimental Subjects.

Apparatus. The surfaces of six copper blocks (25.5 x 28.5 mm, 6 mm thick) were

machined with a pattern of truncated pyramids using a wire EDM method (Charmilles

Technologies Robofil 1020SI Wire EDM) as seen in Figures 3-1 and 3-2. The truncated

pyramids had a constant height of 0.5 mm, and were spaced at periods of 0.80, 1.0, 1.5,

2.0, 2.5, and 3.0 mm to produce a range of surface textures. The material properties of

copper are shown in Table 3.1.



Table 3.1. Material properties of Copper

Material Property Copper

Conductivity k [W/mK] 398

Density p [kg/m3] 8954

Specific heat c [J/kgK] 384

Contact coefficient (kpc)1/ 2 [J/m 2s"/2k] 36992

Young's Modulus E [GPa] 110.0
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Figure 3-1. Copper test stimuli with truncated pyramids (top row, left to right: spatial
periods of 3.0, 2.5, 2.0 mm; bottom row, left to right: spatial periods of 1.5, 1.0, 0.80
mm). The height of the pyramids for each spatial period is 0.5 mm.



" 2 3T
1 41I

Figure 3-2. One copper test stimulus with spatial period of 2.5 mm and height of 0.5 mm.

A thermistor (457 n diameter, 3.18 mm length; Model 56A1002-C8, Alpha

Technics) was glued to the edge of the contact area of the right index finger pad with a

biocompatible cyanoacrylate (Liquid Bandage, Johnson & Johnson). Another thermistor

was mounted in free air to record the ambient temperature of the room, which was

maintained at approximately 23 C. Both thermistors were connected to a data

acquisition unit (Model 34970A, Agilent Technologies), which was controlled with a

Labview 8.5 program. A digital force gauge (Model DFS-20, SHIMPO) was mounted on

a fixture at elbow height to allow subjects to comfortably press down on each copper

block with their right index fingers as seen in Figure 3-3. The force gauge was connected

to a shielded connector block for analog I/O (Model NI BNC-2110, National

Instruments) that was in turn connected to a data acquisition unit (NI DAQCard-6036E,

National Instruments) in the computer. An aluminum fixture was constructed to hold the

copper block in place on the digital force gauge. The force gauge was zeroed when the

weight of the aluminum fixture and the copper block were placed on it.

The force gauge was calibrated with a set of calibrated weights. The voltage

output was measured in the experimental set-up with the Labview 8.5 program. The



following calibrated weights were placed on the force gauge: 10 g, 20 g, 50 g, 100 g, 200

g, 500 g. The relationship between the voltage measured and the force applied was linear

with a R2 value of 0.9999.

Figure 3-3. Experimental set-up for measuring the temperature change as a function of
spatial period. The recirculating chiller pad is shown to the right of the force gauge.

Procedure. Upon arrival, each subject's finger pad was cleansed with a cotton swab of

isopropyl rubbing alcohol (70%) (CVS pharmacy). A thermistor was glued using a

biocompatible cyanoacrylate (Liquid Bandage, Johnson & Johnson) on the right index

finger pad so as not to interfere with contact. Medical tape (Nexcare) was used to secure

the thermistor leads along the hand and wrist. Subjects' initial skin temperatures ranged

from 29.5 to 36.1 oC, with an average value of 32.1 C. The room temperature was

maintained at 23 C, and measured with a thermistor in free air.

All of the copper test stimuli were stored at room temperature. Each of the six

blocks was presented three times for a total of 18 trials per subject. The order of



presentation of each copper block was randomized. There was at least a one minute

break between trials, during which subjects placed their right hand back on the

recirculating chiller to maintain the skin temperature at 33 oC.

Subjects were presented with three auditory cues generated by the Labview

program, which indicated the sequence of the experiment. Subjects began with their right

hand on the chiller pad. At the first sound cue, subjects removed their hand from the

chiller pad and placed it in a holding position. At the second sound cue, subjects were

instructed to make contact with the copper surface for 10 seconds at a constant force of 1

N. The third sound cue signaled the end of the 10-second contact interval and subjects

removed their finger from the block and replaced it back onto the chiller pad. Labview

recorded the skin temperature and ambient data at a sampling frequency of 1 Hz, which

was sufficient to capture the change in temperature. It was not possible to capture the

change in temperature of the surface of the copper block in this experiment. Several

methods were tried, including embedding a thermistor below the contact surface, and

taking a thermal image directly after contact. The copper block did not hold a thermal

signature that could be captured after 10 seconds of contact with the finger.

3.2 Results

The spatial period is used to define the surface roughness of the copper surface,

where smooth and rough surfaces are characterized by small and large spatial periods,

respectively. For the test stimuli in this experiment, the spatial period is equal to 4a,

where a is the dimension shown in Figure 3-4. The height of the truncated pyramids for

all spatial periods is 0.5 mm.
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Figure 3-4. Geometry of the truncated pyramids on the copper surfaces.

A surface profilometer (SurfTest SV-3000S4, Mitutoyo) was used to measure the

height and spatial period of the six test stimuli. The positional accuracy is 0.05 pm in

the x-axis in the plane of the 4a spatial period, and 1 p.m in the z-axis in the plane of the

height of the truncated pyramids. The stylus tip shape is a 60 degree cone with a tip

radius of 2 p.m. The measured average height of the pyramids was 0.44 mm. The

difference between the measured and the programmed height of the pyramids may have

been due to the manual positioning of the truncated pyramids under the stylus tip.

Especially for smaller spatial periods, it was difficult to visually align the tops of the

pyramids under the measurement stylus. However, the spatial period measurements were

very accurate for the six surfaces, as shown in Table 3.2.

Table 3.2. Measured spatial period of six test stimuli

Nominal Measured
Period (mm) Period (mm) Difference

3.0 3.034 0.034

2.5 2.498 -0.002
2.0 2.021 0.021
1.5 1.501 0.001

1.0 1.004 0.004
0.8 0.800 0.000



The temperature of the finger pad, as measured by a thermistor, was recorded

during contact with each copper test stimulus. The decrease in skin temperature as a

function of the spatial period of the copper surface was relatively small as shown in

Figure 3-5.
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Figure 3-5. Decrease in skin temperature as a function of spatial period of the copper
surface averaged across 10 participants. The error bars represent the standard error of the
mean.

The data in Figure 3-5 show that as the surface became rougher, there was a

progressive decrease in temperature during contact. The overall change in temperature

was 0.54 'C between 0.8 mm and 3.0 mm spatial periods, whereas the mean decrease in

skin temperature averaged across the six spatial periods was 1.94 'C. A repeated-

measures ANOVA with the spatial period as the within subjects factor, and the change in

temperature as the dependent variable indicated that there was not a significant difference



in the change in temperature as a function of the spatial period of the stimulus (F(2, 21)=

2.099, p= 0.141). However, there was a significant linear trend (p=0.026), which

suggests that there is a small but consistent decrease in skin temperature as a function of

spatial period. These results will be used to evaluate how surface roughness influences

the perception of temperature during contact.

3.3 Discussion

The range of spatial periods chosen for this experiment is comparable to those

used in other studies examining the perception of surface roughness (Connor et al., 1990;

Depeault et al., 2008; Hollins et al., 2001; Meftah et al., 2000). These studies focus on

the effect of surface roughness on tactile sensation, and have not examined the effect of

roughness on the thermal responses of the skin. It has been shown that cooling the skin

affects the perception of roughness (Green et al., 1979), but there are no data that indicate

how the temperature of the skin changes with surface roughness.

Ho and Jones (2006a) performed simulations of the effect of surface roughness on

the heat flux conducted out of the skin when in contact with a copper surface. The

thermal model used defined surface roughness in terms of the root-mean-square (RMS)

surface roughness and asperity slope. The contact pressure and microhardness of the skin

were also included in the model. Simulations were performed for RMS values equal to 8

and 30 gm, which are typical surface roughness values obtained from milling and sawing

processes, respectively (Kalpakjian, 1995). The simulations indicated that surface

roughness can influence the heat flux conducted out of the skin within 1 second of initial

contact, and also that a larger decrease in skin temperature would occur when the hand

was in contact with a smoother surface.



The results in Figure 3-5 suggest that the opposite is true, that is, there is a greater

decrease in temperature when the hand is in contact with a rougher surface. The disparity

between the results and the simulation may be due to the model used to estimate thermal

contact resistance. The model predicted that the thermal contact resistance for the 0.8

mm copper stimulus was equal to 0.005 m2K/W, and the thermal contact resistance of the

3 mm copper stimulus was equal to 0.010 m2K/W. The model predicted that the

smoother surface would have the lower thermal contact resistance, and therefore there

would be a greater heat flux out of the skin during contact and a greater decrease in skin

temperature. The thermal contact resistance model of Ho and Jones (2006a) was based

on those of Benali-Khoudaja et al. (2003) and Yovanovich (1981). As noted in the

previous experiment, the Yovanovich model is based on two rigid bodies in contact,

which is not the case in this experiment, where soft tissue is in contact with a rigid copper

surface.

The interface formed between contacting surfaces can play a major role in the

thermal network that is established (Fedasyuk, 2003). It may be necessary to incorporate

the geometric properties of the surfaces in contact, in addition to the RMS surface

roughness and the asperity slope. The geometry and spatial period of the copper test

stimuli in this experiment may have affected the contact area of the skin with the surface.

For larger spatial profiles, the truncated pyramids are separated by a larger distance a,

which may have allowed the finger pad to deform into the gap and have a greater contact

area, which would result in a greater decrease in temperature. Likewise, the more-dense

smaller spatial periods did not allow the finger pad to deform into the grooves to the same

extent, and so may have resulted in a smaller temperature change. Although the contact



area on the top of each stimulus is the same for all stimuli (37.5 mm2), it appears the

finger pad was able to deform more around the textured surface and so in fact there was a

larger contact interface. It is also important to understand the effect of contact force on

the deformation of the finger when in contact with each surface. At higher contact

forces, the finger pad would be expected to undergo more deformation against a flat

surface. The first experiment showed that there was a rapid increase in contact area at

low forces, and that over 70% of this change occurred at contact forces below 1 N. In

this set of experiments, a contact force of 1 N was in used in all trials, which was

presumably sufficient for the finger pad to conform to the geometry of the copper

surface. At a contact force of 1 N, the finger did not penetrate into the textured array of

the smoother surfaces, but would presumably do so at higher forces.

3.4 Conclusion

There was a progressive decrease in temperature as the spatial period of the

truncated pyramids on the copper surface increased. Statistical analyses indicated that

there was not a significant difference in the changes in temperature for the six surfaces

tested, but there was a significant linear trend in the data. This suggests that there is a

small but consistent decrease in skin temperature with increasing surface roughness for

an object in contact with the hand. The experimental data did not confirm theoretical

predictions, which may be due to the method used for estimating thermal contact

resistance at lower forces.



4 Effect of Surface Roughness on Temperature Perception

The results from the previous experiment showed that there was a small change in

temperature as a function of the surface roughness of the contact material. The objective

of this experiment was to determine if the changes in temperature associated with the

surface roughness of the object influenced the perceived coldness of the object in contact

with the finger. Although the effect of surface roughness on the perception of

temperature has not been previously evaluated, it has been shown that cooling the skin

attenuates the perception of roughness (Green et al., 1979). Green showed that cooling

the skin has an inhibitory effect on the perception of roughness, while warming the skin

tended to improve the perception of roughness. In the present experiment, the surface

roughness of two objects was varied, and participants were required to indicate which of

the two surfaces felt cooler.

4.1 Method

Subjects. Ten normal healthy adults volunteered to participate in this study. There were

six males, and four females ranging in age from 21 to 40 years old, with an average age

of 26 years old. Five of the ten subjects participated in the previous study. The subjects

had no known abnormalities of the tactile, proprioceptive, or thermal sensory systems and

no history of peripheral vascular disease. The subjects reported that they were right

handed. This research was approved by the MIT Committee on the Use of Humans as

Experimental Subjects.

Apparatus. Two identical digital force gauges (Model DFS-20, SHIMPO) were

mounted side by side on an aluminum frame as seen in Figure 4-1. The force gauges



were connected to a shielded connector block (NI BNC-2110, National Instruments),

which was then connected to a data acquisition unit (NI DAQCard-6036E, National

Instruments) and controlled by a Labview 8.5 program. Three thermistors were used to

monitor the skin temperature on each finger and room temperature. The thermistors were

connected to a separate data acquisition unit (Model 34970A, Agilent Technologies), and

also controlled by a Labview program.

Composite fixtures were constructed to mount the copper test stimuli onto the

force gauge. The fixtures consisted of an aluminum base (35 mm x 38 mm, 16mm thick)

tapped with a M6 thread, with black opaque acrylic panels to obstruct the subject's view

of the test stimuli. There was a slot in the back of each fixture to slide the copper stimuli

in and out. The fixtures were numbered as 1 (left finger) and 2 (right finger).

Four copper test stimuli with spatial periods of 1.0, 1.5, 2.5, and 3.0 mm that were

used in the previous experiment were chosen based on the measured temperature changes

recorded in that experiment. The copper test stimuli were stored at room temperature,

which was maintained at 23 C.



Figure 4-1. Experimental set-up for determining which of two copper test stimuli felt
colder. Two fixtures with extended roofs are mounted on force gauges.

Procedure. Upon arrival, each subject's finger pad was cleansed with a cotton swab of

isopropyl rubbing alcohol (70%) (CVS pharmacy). A thermistor was glued using a

biocompatible cyanoacrylate (Liquid Bandage, Johnson & Johnson) on the side of the

right and left index finger pads so as not to interfere with contact. Medical tape

(Nexcare) was used to secure the thermistor leads along the hand and wrist. Subjects'

initial skin temperatures ranged from 30.1 oC to 36.8 C, with an average value of 34.1

C. The room temperature was maintained at 23 'C as measured with a thermistor in free

air.

Each of the four test stimuli was paired with the other stimuli including itself,

which gave a total of 10 pairs. Five repetitions were completed per pair, which resulted



in 50 trials per subject. Within each block of 50 trials, the order of presentation of the

test stimuli was randomized.

The subjects were presented with three auditory cues generated by a Labview 8.5

program. Subjects started with both hands on the chiller pad. At the first sound cue, they

removed their hands from the chiller and placed their right and left index fingers in the

holding position. At the second sound cue, subjects inserted their right and left index

fingers into the fixtures and placed their fingers on the copper blocks. A two-alternative

forced choice method was used in which the subjects were instructed to choose the cooler

of the two surfaces by reporting which finger made contact with the cooler material, 1

(left) or 2 (right). The subjects were not told which spatial patterns were used, and no

feedback was given as to the correctness of their judgments. They were encouraged to

lift and replace their fingers on the test stimuli to sense the temperature, but were

restricted from lateral scanning of the sample surface. A maximum presentation time of

10 seconds was given for each trial. At the third sound cue after 10 seconds, subjects

removed their fingers from the test stimuli and placed them back on the chiller pad.

4.2 Results

A correct discrimination was defined as selecting the cooler, or rougher, of the

two surfaces as defined by the results from the previous experiment. The results of this

experiment are shown in Table 4.1.



Table 4.1. Percentage of correct discriminations

Spatial
Period 1.0 mm 1.5 mm 2.5 mm 3.0 mm

1.0 mm x 64.0 76.0 82.0

1.5 mm x x 70.0 80.0

2.5 mm x x x 58.0

3.0 mm x x x x

The cells highlighted in green represent the discriminations that exceeded the threshold

level of 72%, which was chosen as the level beyond which subjects could reliably

discriminate between the two stimuli.

The overall change in temperature when the spatial period increased from 1 to 3

mm was 0.65 C which is well above the threshold level. Participants were only able to

reliably distinguish between 1 and 2.5 mm spatial period (AT= 0.49 C), 1 and 3 mm

(AT= 0.65 oC), and 1.5 and 3 mm (AT= 0.37 C). Table 4.2 shows the difference in

temperature between each stimulus pair averaged across 10 participants.

Table 4.2. Temperature difference between stimulus pairs

Spatial
Period 1.0 mm 1.5 mm 2.5 mm 3.0 mm

1.0 mm x 0.29 OC 0.49 OC 0.65 OC

1.5 mm x x 0.20 OC 0.37 OC

2.5 mm x x x 0.17 0 C

3.0 mm x x x x



The results of this experiment demonstrated that the small temperature differences

measured in the previous experiment were perceptible when the difference in the spatial

period of the copper surfaces exceeded 1.5 mm. The change in skin temperature through

time was recorded in the previous experiment during the 10-second contact period.

Figure 4-2 shows the change in skin temperature through time for the pairs of stimuli that

subjects discriminated reliably in the present experiment. The rate of skin temperature

change varied from 0.16 °C/sec to 0.23 °C/sec for the 1 mm and 3 mm spatial periods,

respectively.
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Figure 4-2. Skin temperature as a function of time averaged across 10 subjects.



The chance level for this experiment when the same stimulus was presented to

both hands was 50%, and Table 4.3 shows that there was no systematic bias in the

subjects' responses.

Table 4.3. Percentage of left and right hand selections for 10 subjects

Subject % Left % Right

1 75 25

2 45 55

3 80 20

4 20 80

5 70 30

6 35 65

7 50 50

8 55 45

9 50 50

10 20 80

Mean (%) 50 50

The mean was 50% for choosing the material in contact with the left and right fingers,

which is expected when responding by chance.



4.3 Discussion

The ability of humans to discriminate changes in temperature are influenced by

the site of stimulation, baseline temperature of the skin, and the amplitude and rate of the

temperature change (Jones & Berris, 2002). If the rate of skin temperature changes very

slowly, then an observer can be unaware of a temperature change of up to 5-6 OC,

provided that the skin temperature remains within the neutral zone of 30-36 'C. If the

change occurs at a more rapid rate, such as at 0.1 OC/sec, then it is possible to detect

small increases and decreases in temperature as shown in Figure 4-3 (Kenshalo et al.,

1968; Kenshalo, 1976).
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Figure 4-3. Warm (circles) and cold (squares) thresholds on the forearm as a
function of the rate of temperature change at an adapting skin temperature of 32 OC
(Kenshalo et al., 1968; Kenshalo, 1976).

The copper blocks were stored at room temperature (23 OC), and the initial skin

temperatures of the subjects ranged from 30.1 oC to 36.8 'C, with an average temperature

of 34.1 'C. The rate of temperature change based on the results from Experiment 2



ranged from 0.16 oC/sec to 0.23 °C/sec for spatial periods of 1 mm and 3 mm,

respectively. Based on Kenshalo's (1976) data, the rate of temperature change in the

present experiment was rapid enough to perceive the small temperature changes that

resulted from varying the surface roughness of the material.

In this experiment, subjects used their right and left index fingers to perceive

which of two stimuli was the cooler stimulus. Although the difference in skin

temperature between all stimulus pairs as seen in Table 4.2 was above the cold threshold

reported for the hand, 0.11 "C (Stevens & Choo, 1998), subjects were unable to reliably

discriminate between all copper stimuli in the present task. A possible explanation may

be due to the effects of spatial summation during simultaneous presentation. Thermal

perception is characterized by spatial summation and poor spatial resolution. Spatial

summation refers to an intensified perception of a stimulus as its spatial extent increases.

Both warm and cold thresholds diminish when stimuli are presented symmetrically

(Rozsa & Kenshalo, 1977).

The perceived magnitude of a cold thermal stimulus is a function of both the area

of stimulation and its intensity. Both variables are equally important and can be traded to

produce a given level of cold sensation. Although the contact area on the top of each

copper stimulus is the same for all stimuli, it appears that the viscoelastic nature of the

finger pad allowed it to deform more on the surfaces with larger spatial periods, so that

there was a larger contact interface. The increased contact area provided a larger surface

for heat to flow out of the finger to the copper surface, and therefore resulted in the

rougher surfaces being perceived as cooler.



4.4 Conclusion

The changes in skin temperature when the hand makes contact with surfaces of

varying roughness are perceptible, and demonstrate that the perception of surface

roughness is not only influenced by changes in temperature, but in turn affects the

perception of temperature. It is possible to reliably perceive the small differences in

temperature that result from a change in the surface roughness of the contact material.

These findings confirmed the results from the previous experiment, in that subjects

reliably chose the rougher of the two materials as the cooler stimulus. The viscoelasticity

of the skin permitted a greater contact area between the finger and copper surface at

higher spatial periods, which allowed for a greater heat flux to be conducted out of the

finger pad.



5 Effect of Object Temperature on Force Perception

Sensory feedback is used to control the manipulation of objects held in the hand.

The object's physical properties are internally processed to scale the fingertip forces to

the actual loading requirements. Sensory inputs from cutaneous mechanoreceptors

influence the perceived magnitude of forces generated by individual fingers and the hand

(Gandevia & McCloskey, 1977; Flanagan & Bandomir, 2000). Psychophysical studies

suggest that the attributes of objects in contact with the skin interact perceptually, such

that changes in one stimulus may alter the perception of others. Goodwin and Wheat

(1992) found an effect of object curvature on the perceived contact force when spherical

stimuli were passively applied to the finger tip. Increases in object curvature resulted in

slight increases in the perceived contact force. Henningsen et al. (1995) conducted a

series of experiments involving an active task which measured the ability to

simultaneously match the forces generated by the right and left index fingers so that the

forces were perceived to be identical, when the contact surface shape varied. Subjects

consistently produced less force with the finger that pushed against the conical contact

pad. These findings indicate that varying properties at the hand-object interface can

distort the perception of the magnitude of applied force and the heaviness of weights due

to the integration of tactile and proprioceptive inputs with signals arising from the

centrally generated motor command.

Several other studies have examined the effect of skin anesthesia on force and

weight perception, and in particular the loss of sensory inputs from cutaneous afferents

from the thumb and index finger. When the skin on the thumb is anesthetized, the

perceived heaviness of objects lifted by flexing the thumb increased by over 40%,



whereas the perceived heaviness increased by 13% for objects lifted with the anesthetized

index finger (Kilbreath et al., 1997). Nowak et al. (2001) demonstrated that a lack of

sensory feedback from the finger tips due to anesthesia resulted in a marked increase in

grip forces during arm movements with a grasped object.

The objective of the final set of experiments is to determine whether the

perception of contact force is affected by the surface temperature of the object in contact

with the hand. Weber (1846) reported that a cold German coin felt approximately as

heavy as two warm coins when placed on the forehead. He conjectured that cooling an

object has an intensifying effect while warming has an attenuating effect on pressure

sensation. It has since been shown that Weber's conjecture holds true for the intensifying

effect of cold objects, but warmth can also intensify pressure sensation although the

effect is considerably smaller and limited to certain body sites (Stevens & Hooper, 1982).

A "reverse" Weber phenomenon has also been investigated, and there appears to be no

effect of changing the force of stimulation on the sensation of warmth or cold

(Zimmermann & Stevens, 1982). The final set of experiments utilizes thermal displays to

simulate object temperatures and measures the subject's ability to match forces generated

with their right and left fingers.

5.1 Method

Subjects. Ten normal healthy adults volunteered to participate in this study. There were

seven males, and three females ranging in age from 21 to 40 years old, with an average

age of 26 years old. The subjects had no known abnormalities of the tactile,

proprioceptive, or thermal sensory systems and no history of peripheral vascular disease.



The subjects reported that they were right-handed. This research was approved by the

MIT Committee on the Use of Humans as Experimental Subjects.

Apparatus. Two Peltier devices (Model DT6-6L, Marlow Industries Inc.) were used to

display thermal stimuli to the fingers. Each Peltier device was positioned on top of a

copper heat sink (30 mm x 30 mm x 5 mm), which was connected to a recirculating

chiller (Model 1147P, VWR International). A thin layer of thermal grease (AOS non-

silicone HTC) was applied between the copper heat sink and the Peltier device as seen in

Figure 5-1.

Figure 5-1. Thermal grease is applied on top of the liquid-cooled copper heat sink (left),
and the Peltier device (middle) is compression-fitted inside the SLA fixture (right).

A three-piece fixture was designed to mount the Peltier device onto the copper

heat sink, and was constructed with a rapid prototyping system (Viper Laser

Stereolithography Forming Center, 3D Systems) as seen in Figure 5-2.



Figure 5-2. Three-piece fixture design that was created in the Viper Laser
Stereolithography Forming Center.

The bottom piece of the fixture was 60 mm x 40 mm x 20 mm, and contained a slot (41

mm x 31 mm x 9 mm) to accommodate the Peltier device and copper heat sink. The

middle piece of the fixture had an elliptical hole, with a primary axis of 10.5 mm, and a

secondary axis of 7.5 mm, and was rounded to allow for comfortable finger insertion.

The top piece of the fixture had a channel through which the index finger could be

inserted, so that it could contact the Peltier device in the elliptical opening in the middle

piece of the fixture. An extended roof was added to prevent subjects from visually

assessing the forces applied by their fingers. The three pieces of the fixture were

assembled with four M3 screws, and the bottom piece was threaded with an M6 hole to

be mounted onto each force gauge as shown in Figure 5-3.



a.

b.
Figure 5-3. Fully assembled fixture with the Peltier device and copper heat sink installed
(a) and an exploded assembly drawing of a fixture (b).

The fixtures were attached to two identical force gauges (Model DFS-20,

SHIMPO), which were mounted side by side on an aluminum frame. The force gauges

were zeroed when the weight of the fixture containing the Peltier and the heat sink was

placed on it. The force gauges were connected to a shielded connector block (NI BNC-



2110, National Instruments), which was then connected to a data acquisition unit (NI

DAQCard-6036E, National Instruments) and controlled by a Labview 8.5 program. Two

thermistors were used to monitor the skin temperature on each finger, and three type E

thermocouples were used to measure the surface temperature on the presentation side of

each Peltier device and room temperature. The thermocouples mounted on the Peltier

devices provided temperature feedback to the PI controller in the Labview program. The

thermocouples were connected to a separate data acquisition unit (Model 34970A,

Agilent Technologies). Two power supplies (Model E3632A, Agilent Technologies)

were used to provide voltage and current to the Peltier devices. The temperature control

flow chart is shown in Figure 5-4.

Left Finger Right Finger

Thermistor
Thermocou le

Peltier device

PI Control

Figure 5-4. Schematic representation of temperature control of thermal displays.



Another recirculating chiller (Model 1167P, VWR International) as described in Chapter

2, provided a surface to maintain the skin temperature at 32 'C at the start of the

experiment, and between trials prior to making contact with the Peltier devices. The

room temperature was maintained at approximately 22 'C for the duration of each

experiment. The experimental set-up is shown in Figure 5-5.

Figure 5-5. Experimental set-up with thermal displays mounted on two force gauges.

Procedure. Upon arrival, each subject's right and left index finger pads were cleansed

with a cotton swab of isopropyl rubbing alcohol (70%) (CVS pharmacy). Thermistors

were glued using a biocompatible cyanoacrylate (Liquid Bandage, Johnson & Johnson)

on the index finger pads on the perimeter of the contact area. Baking soda was used to



mark the contact area of the finger pad at a force of 8 N, and the thermistor was glued on

the edge of that contact area. Medical tape (Nexcare) was used to secure the thermistor

leads along the hand and wrist.

Subjects were presented with auditory cues generated by the Labview program,

which indicated the sequence of the experiment. Subjects began with their right and left

hands on the chiller pad until their skin temperature reached 32 oC as measured by the

thermistors on the finger pads. At the first sound cue, subjects removed their hands from

the chiller pad and placed it in a holding position. At the second sound cue, subjects

were instructed to generate a given force with their right index finger on the Peltier

device, which was set to a specific temperature. The reference, or right-handed, Peltier

device was set to one of three warm temperatures (34, 36, 38 oC), or three cool

temperatures (22, 24, 26 C), or a neutral temperature (32 oC). A display showed the

target force and the measured force for the right index finger, and the subject was given 2

seconds to match the target force. The third sound cue signaled the start of a 4-second

time period during which the subject was instructed to hold the target force and attend to

the sensation associated with that target force. The fourth sound cue signaled the subject

to place their left index finger on the other Peltier device, which was maintained at a

neutral temperature of 32 C, and to produce a force that matched the perceived

magnitude of the force being produced by the right index finger. They were given 3

seconds to match the forces. No feedback was provided about the force produced by the

left index finger. At the fifth sound cue, the subject moved both hands back onto the

chiller pad. The next trial began when the subject's skin temperature returned to 32 oC.



The target forces used in this experiment were 1, 2, 4, 6, and 8 N. A Labview

program recorded the skin temperature data at a sampling frequency of 4 Hz, which was

sufficient to capture the change in temperature. The force data was sampled at 55 Hz.

Each of the five target forces was paired with seven contact surface temperatures, which

gave a total of 35 pairs. Two repetitions were completed per pair, which resulted in 70

trials per subject. The order of presentation of warm and cool stimuli was randomized

among subjects.

5.2 Results

The matching force was determined from the average force applied for 1 second

during the middle of the 3-second matching time interval for each subject at each force.

The selected timeframe captured the matching force after the initial force generation.

The matching forces under the neutral condition (32 'C) as a function of the reference

forces are shown in Figure 5-6. A linear regression function fitted to the data accounted

for 99% of the variance. The slope of the regression line indicates that subjects slightly

overestimated low forces and consistently underestimated higher reference forces, and

were most accurate in the middle of the range of forces presented.
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Figure 5-6. Matching force as a function of reference force for the neutral condition
averaged across 10 subjects. A line of equality (matching equals reference force) is
shown in red.

Figure 5-7 shows the matching force as a function of the reference force for the

cool and neutral surface temperatures. Linear regression functions fitted to the data

accounted for 99% of the variance for all cool stimuli presented. The slopes of the

regression lines were not significantly different as the surface temperature changed. The

slopes ranged from 0.78 for the 22 'C surface temperature, 0.68 for the 24 OC surface,

and 0.85 for the 26 oC surface. Similarly, the slopes of the regression lines for the warm

stimuli were 0.78 for the 34 oC surface, 0.80 for the 36 oC surface, and 0.76 for the 38 'C

surface. Linear regression functions fitted to the warm surface temperatures accounted

for 99% of the variance as seen in Figure 5-8.
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Figure 5-7. Matching force as a function of reference force for cool
averaged across 10 subjects. A line of equality is shown in black.
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The matching forces averaged across 10 subjects are plotted as a function of

surface temperature for the cool and neutral stimuli in Figure 5-9 and for the warm and

neutral stimuli in Figure 5-10. Figure 5-11 displays the matching forces as a function of

surface temperature for all stimuli.
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Figure 5-9. Matching force for cool and neutral stimuli as a function of reference finger
surface temperature. The standard errors of the mean are shown.
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Figure 5-10. Matching force for warm and neutral stimuli as a function of reference
finger surface temperature. The standard errors of the mean are shown.
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Figure 5-11. Left finger match force is shown as a function of reference surface
temperature for all stimuli. The standard deviations are shown.
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A repeated-measures ANOVA with the reference force and surface temperature as

the within factors and matching force as the dependent variable indicated that there was a

significant difference in the matching force as a function of reference force (F(1, 12)=

125.36, p< 0.001), but there was not a significant difference as a function of reference

surface temperature (F(4, 39)= 1.35, p= 0.267) with Huynh-Feldt corrected df and the

interaction was not significant.

5.3 Discussion

Neural signals delivered to the relevant motoneurones trigger a muscle to

contract, which in turn produces an isometric force or causes movement about a joint.

The final force developed by the muscle depends on the voluntarily-generated central

motor command, in addition to signals related to reflex facilitation or inhibition provided

by peripheral inputs (Gandevia & McCloskey, 1977). Alterations of cutaneous and joint

afferent input can influence the perception of force (Kilbreath et al., 1997). Gandevia

and McCloskey (1977) showed that the perceived heaviness of a weight lifted by flexion

of the thumb increased when the digital nerves of the thumb were anesthetized. The

effect of skin anesthesia on force and weight perception is thought to reflect the loss of

the net facilitatory effect of the reflex input from cutaneous and joint afferents on the

magnitude of the descending motor command. The mechanisms underlying the

generation of force suggest that other sensory inputs such as thermal cues may influence

force perception.

Stevens and Hooper (1982) performed a series of experiments using passive touch

in which weights were placed on a subject's forearm and the effect of skin and object



temperature on weight perception was studied. Subjects made magnitude estimations of

the apparent weight of circular aluminum stimulators of varying mass and temperature.

The stimuli were set to cold (0 'C), neutral (34 'C), and warm (45 'C) temperatures as

regulated by a water bath, and were then placed on the forearm where the skin was

maintained at 25, 33, or 38 C. The stimulators weighed 21, 45, and 105 g (0.20, 0.44,

1.0 N) with a surface area equal to 12.6 cm 2, corresponding to contact pressures of 0.16,

0.35, 0.82 kPa. The contact pressures for the finger pad in the present experiment ranged

from 7.2 to 45.5 kPa, corresponding to contact forces of 1 N and 8 N, respectively.

Although the contact pressure range is considerably lower in Stevens and Hooper's

(1982) experiments and the site of stimulation is different, the results are relevant to the

present findings. Stevens and Hooper (1982) showed that under neutral skin conditions,

cold objects felt heavier than neutral ones, and warm objects felt somewhat heavier,

indicating that the sensation of weight is amplified as the object temperature increases or

decreases. The results from the present experiment on the finger pad did not reveal this

differentiation, in that the temperature of the contact surface did not have a significant

effect on force perception over the range of 22 to 38 C. The difference in findings may

be due to the active nature of force production in the present experiment as well as the

range of temperatures selected, where the coldest surface temperature presented was 22

C, as compared to 0 oC in Stevens and Hooper's experiments. Also, the warmest

surface in the present experiment was 38 'C, whereas the warmest object in their

experiment was 45 'C, which is at threshold for the onset of pain.

Stevens and Hooper (1982) also explored how skin temperature and object

temperature combine to produce thermal sensation. They showed that both warming and



cooling the skin eliminated the intensifying effect of warm objects. However, warming

the skin did not change the intensifying effect of cold objects, and cooling the skin only

slightly diminished the intensifying effect of cold objects. Their findings show that cold

has a larger and more robust impact on apparent weight than warmth. In the present

experiment, the skin temperature was maintained at a neutral temperature of 32 OC, so

that only the effect of object temperature could be evaluated.

Irrespective of temperature effects, some regions of the body are more sensitive to

pressure than others. Stevens (1979) explored the effect of the site of stimulation on

thermal sensation. The same circular object stimuli were judged to feel heavier on the

palm of the hand than on the back. These results confirmed Weber's (1834) proposed

correlation between weight sensitivity and tactile acuity. Stevens (1982) conjectured that

if weight perception and tactile acuity are mediated by the same receptor network, then

temperature may influence apparent weight and tactile acuity. He reported that cooling

and warming objects in contact with the skin on the forearm caused a marked

improvement in the skin's tactile acuity relative to thermally neutral stimulation.

Psychophysical experiments on tactile perception have been conducted using both

active and passive stimulation. During active touch, the observer initiates and controls

the acquisition of sensory information, whereas in passive touch, the stimulus is brought

into contact with the observer. Gibson (1962) conducted a series of experiments that

demonstrated reduced tactile pattern recognition during passive exploration. These

results may be attributed either to difficulty in reproducing an active task, where other

tactile and thermal inputs (such as contact force, duration, and area) are available to the

observer, or to a difference in the sensory neural mechanisms underlying active and



passive touch. Vega-Bermudez et al. (1991) performed several tactile letter recognition

experiments where the inputs for passive and active touch were virtually identical. The

direction and range of motion, contact time, and orientation of stimuli were controlled.

There was not a statistically discernible difference between active and passive touch for

tactile letter recognition. The effects of active versus passive touch remains an important

question in the literature.

Flanagan and Bandomir (2000) conducted an experiment using active exploration,

which examined the effect of changes in grasp configuration on the perceived heaviness

of objects in a weight discrimination task. Subjects compared the weights of a series of

test objects with the weight of a reference object using a set of pre-defined grasping

configurations. Objects were perceived to be lighter when lifted with a larger contact

area, wider grip, and five digits in comparison to two digits. They showed that changes

in the voluntarily-generated central motor commands associated with grasp difference

may influence perceived weight. Their study did not take into account the object's

material properties or thermal characteristics, which also may have contributed to the

perceived weight of the stimuli.



5.4 Conclusion

The parameters that were varied in this experiment included object temperature

(cold, neutral, and warm) and contact force. Varying the object temperature did not have

a significant effect on force perception over the range of temperatures evaluated from 22

to 38 OC. A larger range of object temperatures may be needed to demonstrate the

influence of sensory inputs from cutaneous mechanoreceptors on the perceived

magnitude of finger forces.



6 Conclusions

6.1 Summary and Contributions

The goal of this thesis was to evaluate the influence of contact conditions on the

thermal response of the skin and their perceptual effects in hand-object interactions.

Several aspects of contact were examined including contact force, surface temperature,

and surface roughness. All of the tasks involved active haptic exploration, and the skin

was maintained at a neutral temperature for all experiments. The thermal response of the

finger pad was measured with thermistors for local transients, as well as with infrared

imaging to gain information about the temperature distribution across the finger pad in

different hand-object scenarios. A series of experiments evaluated the thermal response

of the skin from both physiological and psychophysical perspectives.

The first experiment was conducted to determine the effect of contact pressure

on the change in skin temperature. Subjects generated a target force ranging from 0.1 to

6 N, which encompasses the range of forces used in hand-object manipulation. The

temperature of the finger pad was measured with both a thermistor on the edge of the

contact area, as well as with an infrared camera. The decrease in skin temperature was

found to be greater when averaged across the entire contact area in the infrared image.

These results were compared to predicted values from the thermal model proposed by Ho

and Jones (2006a). The model accurately predicted skin temperature change at higher

contact pressures (greater than 12 kPa), but underestimated values at lower contact

forces. The difference between the theoretical predictions and the experimental results

may be due to the estimation of thermal contact resistance at low contact pressures.



Although it is known that the surface roughness of an object affects the change in

skin temperature upon contact, this effect had not been previously quantified. Highly

conductive copper surfaces were machined with truncated pyramids of varying spatial

period from 0.8 mm (smooth) to 3 mm (coarse). The contact force and duration were

held constant, while the temperature change was measured with a thermistor on the edge

of the contact area. The overall change in temperature was 0.54 C as the spatial period

increased from 0.8 mm to 3 mm. Although relatively small temperature changes were

measured, greater heat transfer may have occurred that could not be captured due to the

limitations of a local contact temperature sensor. Statistical analysis revealed there was a

significant linear trend, which suggests there is a small but consistent decrease in skin

temperature as the spatial period increases. Interactions between the thermal and tactile

sensory signals may reflect mechanical changes at the skin-object interface. It may be

necessary to account for the geometry of the surfaces in contact, in addition to the RMS

surface roughness and asperity slope, when determining thermal contact resistance. The

previous two sets of experiments indicate that both contact pressure and surface

roughness influence the change in skin temperature when the hand is in contact with an

object.

The objective of the third experiment was to determine the perceptual effects of

the relatively small changes in temperature that were caused by varying surface

roughness. A two-alternative forced choice method revealed that subjects could reliably

discriminate between copper stimuli on the basis of thermal cues when the difference in

the spatial periods was 1.5 mm or greater, even though the temperature differences were

small. As the stimulus became rougher, subjects perceived the surface to be cooler. The



changes in temperature due to varying surface roughness are perceptible, and demonstrate

that the perception of surface roughness is not only influenced by changes in temperature,

but in turn affects the perception of temperature.

The fourth set of experiments sought to investigate the effect of varying the

object's temperature on the perception of contact force. Two thermal displays were

designed with a PI control to display cool, neutral, and warm temperatures to the finger

pad. Force feedback was given for the reference finger, and no feedback was given as to

the force applied by the matching finger. The surface temperature of the object did not

have a significant effect on the perceived magnitude of force over the range that was

examined. It would be useful to examine a wider range of object temperatures at

different contact durations to confirm these initial findings.

In summary, this thesis characterized important factors that affect the thermal

response of the hand during contact. The results of these experiments may be

incorporated into future thermal models in an effort to create more realistic thermal and

haptic displays for virtual environments and teleoperated systems.

6.2 Future Work

The influence of contact pressure on the thermal response of the skin can be

predicted at higher values with the Ho and Jones thermal model (2006a) as shown in

Experiment 1. However, the estimation of thermal contact resistance (Yovanovich, 1981)

is not adequate to predict temperature changes at lower contact pressures. It would be

useful to develop a new model of thermal contact resistance, and design a set of

experiments to validate the effects of thermal contact resistance at low contact pressures.

The change in temperature due to contact pressure is also attributed to the collapse of



capillary blood vessels in the finger tip. A fluid flow model describing the extent of

vasoconstriction (or vasodilation for warming stimuli), as well as the location of collapse

(proximal or distal) may help to design thermal displays that would more accurately

simulate virtual objects.

All of the experiments in this thesis involve active exploration of stimuli.

Thermal effects may vary depending on whether the stimuli being processed are

primarily tactile or proprioceptive in nature. It would be interesting to repeat the

perceptual experiments with passive stimulation. In addition, the experiments were all

designed to maintain the skin temperature thermally neutral. Initial skin temperature is a

key factor in thermal modeling, and it would be useful to conduct a set of experiments in

which the skin is initially warmed or cooled, and study the thermal response and

perception of external stimuli under varying contact conditions. The ambient conditions

for all of the experiments in this thesis were kept at the same temperature and relative

humidity. Some applications of haptic devices, such as teleoperated robotic systems,

may exist in different environments, and it will be necessary to model the temperature

response of the skin under more extreme ambient conditions, such as underwater or in

outer space.
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