479 research outputs found
Recommended from our members
Experimental and Theoretical Evidence for Nitrogen-Fluorine Halogen Bonding in Silver-Initiated Radical Fluorinations
We
report experimental and computational evidence for nitrogen–fluorine
halogen bonding in Ag(I)-initiated radical C–H fluorinations.
Simple pyridines form [N–F–N]+ halogen bonds
with Selectfluor to facilitate single-electron reduction by catalytic
Ag(I). Pyridine electronics affect the extent of halogen bonding,
leading to significant differences in selectivity between mono- and
difluorinated products. Electronic structure calculations show that
halogen bonding to various pyridines alters the single-electron reduction
potential of Selectfluor, which is consistent with experimental electrochemical
analysis. Multinuclear correlation NMR also provides spectroscopic
evidence for pyridine halogen bonding to Selectfluor under ambient
conditions
Modeling emission features of salicylidene aniline molecular crystals: A QM/QM' approach
A new computational protocol relying on the use of electrostatic embedding, derived from QM/QM' ONIOM calculations, to simulate the effect of the crystalline environment on the emission spectra of molecular crystals is here applied to the beta-form of salicylidene aniline (SA). The first singlet excited states (S-1) of the SA cis-keto and trans-keto conformers, surrounded by a cluster of other molecules representing the crystalline structure, were optimized by using a QM/QM' ONIOM approach with and without electronic embedding. The model system consisting of the central salicylidene aniline molecule was treated at the DFT level by using either the B3LYP, PBE0, or the CAM-B3LYP functional, whereas the real system was treated at the HF level. The CAM-B3LYP/HF level of theory provides emission energies in good agreement with experiment with differences of 220/232 nm (cis-keto form) and 28/214 nm (trans-keto form), respectively, whereas notably larger differences are obtained using global hybrids. Though such differences on the optical properties arise from the density functional choice, the contribution of the electronic embedding is rather independent of the functional used. This plays in favor of a more general applicability of the present protocol to other crystalline molecular systems
MODELING ELECTRON DETACHMENT FROM METAL OXIDE CLUSTERS WITH EFFICIENT ELECTRONIC STRUCTURE METHODS
Photoelectron spectroscopy is a powerful technique for investigating the structure and reactivity of metal oxide clusters, which can serve as models of surface defect sites. Assigning photoelectron spectra typically requires corroborating computational simulations. Motivated by the complicated electronic structure often exhibited by these species that can challenge the quality of computational results using widely available quantum chemistry methods, our group has explored the development of efficient electronic structure models to describe photodetachment. This talk will describe these efforts and our lab’s recent applications of such models in investigations of various metal oxide clusters
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
Hybrid QM/QM Simulations of Excited-State Intramolecular Proton Transfer in the Molecular Crystal 7-(2-Pyridyl)-indole
Three-Layer ONIOM Studies of the Dark State of Rhodopsin: The Protonation State of Glu181
The Alkaline Hydrolysis of Sulfonate Esters: Challenges in Interpreting Experimental and Theoretical Data
Sulfonate ester hydrolysis has been the subject of recent debate, with experimental evidence interpreted in terms of both stepwise and concerted mechanisms. In particular, a recent study of the alkaline hydrolysis of a series of benzene arylsulfonates (Babtie et al., Org. Biomol. Chem. 10, 2012, 8095) presented a nonlinear Brønsted plot, which was explained in terms of a change from a stepwise mechanism involving a pentavalent intermediate for poorer leaving groups to a fully concerted mechanism for good leaving groups and supported by a theoretical study. In the present work, we have performed a detailed computational study of the hydrolysis of these compounds and find no computational evidence for a thermodynamically stable intermediate for any of these compounds. Additionally, we have extended the experimental data to include pyridine-3-yl benzene sulfonate and its N-oxide and N-methylpyridinium derivatives. Inclusion of these compounds converts the Brønsted plot to a moderately scattered but linear correlation and gives a very good Hammett correlation. These data suggest a concerted pathway for this reaction that proceeds via an early transition state with little bond cleavage to the leaving group, highlighting the care that needs to be taken with the interpretation of experimental and especially theoretical data
Methyl Complexes of the Transition Metals
Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity.Ministerio de Ciencia e Innovación Projects CTQ2010–15833, CTQ2013-45011 - P and Consolider - Ingenio 2010 CSD2007 - 00006Junta de Andalucía FQM - 119, Projects P09 - FQM - 5117 and FQM - 2126EU 7th Framework Program, Marie Skłodowska - Curie actions C OFUND – Agreement nº 26722
Uncovering the mechanism leading to the synthesis of symmetric and asymmetric Tröger's bases
Tröger´s bases have been attracting great interest due to their potential applications in nanoelectronics, supramolecular chemistry, molecular recognition, biological activity and auxiliaries for asymmetric synthesis. However, a detailed step by step proposal for the mechanism leading to the production of these compounds is still uncovered. A set of five model syntheses of symmetric and asymmetric Tröger´s base derivatives starting from substituted anilines and formaldehyde was done and envisaged as representative for understanding the underlying mechanism. All reasonable pathways were thoroughly scanned by means of DFT calculations. The highest energy TS was associated with the entrance of the first formaldehyde which produces the first out of three key carbocations. The last step, the closure of the methylene-bridged diazocyne heterocycle was also found of kinetic relevance and as a source of stable intermediates or byproducts. The whole mechanistic picture would provide keys for the rational planning of the synthesis of these compounds.Fil: Lanza, Priscila Ailín. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Mar del Plata. Instituto de Investigaciones En Biodiversidad y Biotecnologia. Grupo de Investigacion En Quimica Analitica y Modelado Molecular.; ArgentinaFil: Dusso, Diego. Departamento de Química; ArgentinaFil: Ramirez, Cristina Lujan. Universidad Nacional de Mar del Plata; ArgentinaFil: Parise, Alejandro Ruben. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Mar del Plata. Instituto de Investigaciones En Biodiversidad y Biotecnologia. Grupo de Investigacion En Quimica Analitica y Modelado Molecular.; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Chesta, Carlos Alberto. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Moyano, Elizabeth Laura. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Vera, Domingo Mariano Adolfo. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Mar del Plata. Instituto de Investigaciones En Biodiversidad y Biotecnologia. Grupo de Investigacion En Quimica Analitica y Modelado Molecular.; Argentin
Regioselective Nickel-Catalyzed Reductive Couplings of Enones and Allenes
No AbstractPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78305/1/anie_201004740_sm_miscellaneous_information.pd
- …
