33 research outputs found

    Upper-flow regime bedforms in a subglacial triangular-shaped landform (murtoo), Late Pleistocene, SW Finland: Implications for flow dynamics and sediment transport in (semi-)distributed subglacial meltwater drainage systems

    Get PDF
    We know less about subglacial meltwater flow properties in distributed inefficient and semi-efficient systems in comparison to those of ice marginal eskers and proglacial environments. While previous studies have indicated the overall common presence of upper-flow-regime (UFR) bedforms in glacigenic settings, facies expressions of subglacial meltwater flows remain poorly documented. Three ca. 3 m deep and up to 70 m long trenches excavated across a triangle-shaped subglacial landform called a murtoo in a Lateglacial to Holocene meltwater route in SW Finland provide a detailed window into sedimentary structures presumably formed ca. 40–50 km away from the coeval subaqueous margin of the Fennoscandian Ice Sheet (FIS). The aim of this paper is to document small-scale bedforms, which formed subglacially by meltwater flow and to characterize the proximal and central parts of the studied murtoo during its early evolutionary phase. We defined seven main facies types that characterize the depositional processes of the unit. Overall, the studied deposits reflect increasing meltwater delivery through time and are characterized by abrupt lateral changes in sedimentary structures and grain size. While the initial deposits are dominated by massive and horizontally laminated silt with sand lenses interpreted as lower-flow-regime deposits, the latter sediments are characterized by sinusoidal stratification, sigmoidal cross-stratification and scours with backsets or chaotic fill interpreted as deposits of antidunes, humpback dunes, chutes-and-pools and cyclic steps of the upper-flow regime. The upper-flow-regime bedforms developed on a 1 m high and 15 m long bed slope and are associated with the formation of a short-lived enlarged water-filled cavity or pond, where supercritical density flows allowed for the deposition of upper-flow regime bedforms. The final coarse-grained murtoo head-bar development, characterized by planar-cross stratified gravel and pebbly sand, indicates avalanche processes that were controlled by grain size. Our results confirm that the core of the murtoo is depositional and meltwater processes played a key role in its deposition. Despite the subglacial setting with a subaqueous ice-sheet margin, the meltwater flow was not permanently characterized by pipe-flow conditions. Overall, the findings contribute to the understanding of semi-distributed subglacial meltwater systems during the retreat of a continental ice sheet (FIS) in a rapidly warming climate

    Paleodistributions and Comparative Molecular Phylogeography of Leafcutter Ants (Atta spp.) Provide New Insight into the Origins of Amazonian Diversity

    Get PDF
    The evolutionary basis for high species diversity in tropical regions of the world remains unresolved. Much research has focused on the biogeography of speciation in the Amazon Basin, which harbors the greatest diversity of terrestrial life. The leading hypotheses on allopatric diversification of Amazonian taxa are the Pleistocene refugia, marine incursion, and riverine barrier hypotheses. Recent advances in the fields of phylogeography and species-distribution modeling permit a modern re-evaluation of these hypotheses. Our approach combines comparative, molecular phylogeographic analyses using mitochondrial DNA sequence data with paleodistribution modeling of species ranges at the last glacial maximum (LGM) to test these hypotheses for three co-distributed species of leafcutter ants (Atta spp.). The cumulative results of all tests reject every prediction of the riverine barrier hypothesis, but are unable to reject several predictions of the Pleistocene refugia and marine incursion hypotheses. Coalescent dating analyses suggest that population structure formed recently (Pleistocene-Pliocene), but are unable to reject the possibility that Miocene events may be responsible for structuring populations in two of the three species examined. The available data therefore suggest that either marine incursions in the Miocene or climate changes during the Pleistocene—or both—have shaped the population structure of the three species examined. Our results also reconceptualize the traditional Pleistocene refugia hypothesis, and offer a novel framework for future research into the area

    Palaeoenvironment of Eocene prodelta in Spitsbergen recorded by the trace fossil Phycosiphon incertum

    Get PDF
    Ichnological, sedimentological and geochemical analyses were conducted on the Eocene Frysjaodden Formation in order to interpret palaeoenvironment prodelta sediments in the Central Basin of Spitsbergen. Phycosiphon incertum is the exclusive ichnotaxon showing differences in size, distribution, abundance and density, and relation to laminated/bioturbated intervals. Large P. incertum mainly occur dispersed, isolated and randomly distributed throughout the weakly laminated/non-laminated intervals. Small P. incertum occur occasionally in patches of several burrows within laminated intervals or as densely packed burrows in thin horizons in laminated intervals or constituting fully bioturbated intervals that are several centimetres thick. Ichnological changes are mainly controlled by oxygenation, although the availability of benthic food cannot be discarded. Changes in oxygenation and rate of sedimentation can be correlated with the registered variations in the Bouma sequence of the distal turbiditic beds within prodeltal shelf sediments.Funding for this research was provided by Project CGL2012-33281 (Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain), Project RYC-2009-04316 (Ramón y Cajal Programme) and Projects RNM-3715 and RNM-7408 and Research Group RNM-178 (Junta de Andalucía). The authors benefited from a bilateral agreement between the universities of Granada and Oslo, supported by the University of Granada

    Spatial and temporal uplift history of South America from calibrated drainage analysis

    Get PDF
    A multidisciplinary approach is used to analyze the Cenozoic uplift history of South America. Residual depth anomalies of oceanic crust abutting this continent help to determine the pattern of present-day dynamic topography. Admittance analysis and crustal thickness measurements indicate that the elastic thickness of the Borborema and Altiplano regions is ≤₁₀ km with evidence for sub-plate support at longer wavelengths. A drainage inventory of 1827 river profiles is assembled and used to investigate landscape development. Linear inverse modeling enables river profiles to be fitted as a function of the spatial and temporal history of regional uplift. Erosional parameters are calibrated using observations from the Borborema Plateau and tested against continent-wide stratigraphic and thermochronologic constraints. Our results predict that two phases of regional uplift of the Altiplano plateau occurred in Neogene times. Regional uplift of the southern Patagonian Andes also appears to have occurred in Early Miocene times. The consistency between observed and predicted histories for the Borborema, Altiplano, and Patagonian plateaux implies that drainage networks record coherent signals that are amenable to simple modeling strategies. Finally, the predicted pattern of incision across the Amazon catchment constrains solid sedimentary flux at the Foz do Amazonas. Observed and calculated flux estimates match, suggesting that erosion and deposition were triggered by regional Andean uplift during Miocene times

    Marine influence in Amazonia: evidence from the geological record

    No full text

    The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia)

    No full text
    The scenery of Western Amazonia once consisted of fluvial systems that originated on the Amazonian Craton and were directed towards the sub-Andean zone and the Caribbean. In the course of the Early Miocene these fluvial systems were largely replaced by lakes, swamps, tidal channels and marginal marine embayments, forming a mega-wetland. In this chapter we will review the characteristics of this mega-wetland and its different phases of development. These aquatic environments hosted a diverse fauna whereas the shores of these systems were fringed by palm swamps, and a diverse rainforest occurred in the peripheral dry lands. The genesis of this wetland was primarily driven by geological mechanisms such as the Andean uplift, and an increase in accommodation space in the sub-Andean and intracratonic basins. Additionally, high precipitation rates also played an important role in wetland formation. The earliest phase of wetland development is recorded in boreholes drilled in the sub-Andean foreland basins of Peru and Colombia, and in the intracratonic Solimões Basin of western Brazil. During the latest Oligocene to Early Miocene (~24 to 16 Ma) lacustrine conditions alternated with episodes of Andean and cratonic fluvial drainage as well as marginal marine influence. In Amazonia, marine incursions are intercalated as thin beds in the Middle to Upper Miocene fluvial strata and contain marine and coastal taxa (foraminifera, mangrove pollen). Lacustrine conditions expanded further during the Middle Miocene to early Late Miocene (~16 to 11.3 Ma; Pebas phase). During this period the lake-embayment and swamp systems - fringed by forested lowland - reached their maximum extension. This wetland was subject to marginal marine influence and sustained a large radiation of endemic aquatic invertebrate faunas. During its maximum extent the wetland covered an area of more than 1.5 × 106 km2 - comprising much of the Present western Amazonian lowlands. From the Late Miocene onwards uplift rates in the Eastern Cordillera, Cordillera Real and Cordillera de Merida substantially increased and the Andes became a continuous barrier. This barrier effectively separated lowland Amazonia from Orinoquia and the Magdalena Valley and closed off all lowland connections with the Pacific and the Caribbean. The wetland system became a complex environment where deltaic, estuarine and fluvial environments coexisted. This Late Miocene fluvial-tidal-dominated wetland (~11.3 to 7 Ma, Acre phase) hosted a species-rich vertebrate fauna, but (in contrast to the Pebas phase), the molluscan fauna was species poor and already strongly resembled the modern Amazonian fluvial fauna. This system represents the onset of the transcontinental Amazon River. From 11.3 Ma onwards, sediments of Andean origin reached the Atlantic continental shelf and initiated the build-up of the Amazon Fan
    corecore