159 research outputs found

    A world of cobenefits : solving the global nitrogen challenge

    Get PDF
    Houlton, Benjamin Z. University of California. John Muir Institute of the Environment. Davis, CA, USA.Houlton, Benjamin Z. University of California. Department of Land, Air and Water Resources. Davis, CA, USA.Almaraz, Maya. University of California. Department of Land, Air and Water Resources. Davis, CA, USA.Aneja, Viney. North Carolina State University at Raleigh. Department of Marine, Earth, and Atmospheric Sciences. Raleigh, NC, USA.Austin, Amy T. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Austin, Amy T. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Bai, Edith. Chinese Academy of Sciences. Institute of Applied Ecology. CAS Key Laboratory of Forest Ecology and Management. Shenyang, China.Bai, Edith. Northeast Normal University. School of Geographical Sciences. Changchun, China.Cassman, Kenneth. University of Nebraska – Lincoln. Department of Agronomy and Horticulture. Lincoln. NE, USA.Compton, Jana E. Environmental Protection Agency. Western Ecology Division. Washington, DC, USA.Davidson, Eric A. University of Maryland Center for Environmental Science. Appalachian Laboratory. Cambridge, MD, USA.865-872Nitrogen is a critical component of the economy, food security, and planetary health. Many of the world's sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation

    A World of Cobenefits: Solving the Global Nitrogen Challenge

    Get PDF
    Nitrogen is a critical component of the economy, food security, and planetary health. Many of the world\u27s sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation

    Prevalence of Disorders Recorded in Dogs Attending Primary-Care Veterinary Practices in England

    Get PDF
    Purebred dog health is thought to be compromised by an increasing occurence of inherited diseases but inadequate prevalence data on common disorders have hampered efforts to prioritise health reforms. Analysis of primary veterinary practice clinical data has been proposed for reliable estimation of disorder prevalence in dogs. Electronic patient record (EPR) data were collected on 148,741 dogs attending 93 clinics across central and south-eastern England. Analysis in detail of a random sample of EPRs relating to 3,884 dogs from 89 clinics identified the most frequently recorded disorders as otitis externa (prevalence 10.2%, 95% CI: 9.1-11.3), periodontal disease (9.3%, 95% CI: 8.3-10.3) and anal sac impaction (7.1%, 95% CI: 6.1-8.1). Using syndromic classification, the most prevalent body location affected was the head-and-neck (32.8%, 95% CI: 30.7-34.9), the most prevalent organ system affected was the integument (36.3%, 95% CI: 33.9-38.6) and the most prevalent pathophysiologic process diagnosed was inflammation (32.1%, 95% CI: 29.8-34.3). Among the twenty most-frequently recorded disorders, purebred dogs had a significantly higher prevalence compared with crossbreds for three: otitis externa (P = 0.001), obesity (P = 0.006) and skin mass lesion (P = 0.033), and popular breeds differed significantly from each other in their prevalence for five: periodontal disease (P = 0.002), overgrown nails (P = 0.004), degenerative joint disease (P = 0.005), obesity (P = 0.001) and lipoma (P = 0.003). These results fill a crucial data gap in disorder prevalence information and assist with disorder prioritisation. The results suggest that, for maximal impact, breeding reforms should target commonly-diagnosed complex disorders that are amenable to genetic improvement and should place special focus on at-risk breeds. Future studies evaluating disorder severity and duration will augment the usefulness of the disorder prevalence information reported herein

    Microbial carbon use efficiency promotes global soil carbon storage

    Full text link
    Soils store more carbon than other terrestrial ecosystems1,2^{1,2}. How soil organic carbon (SOC) forms and persists remains uncertain1,3^{1,3}, which makes it challenging to understand how it will respond to climatic change3,4^{3,4}. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss57^{5–7}. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways4,6,811^{4,6,8–11}, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes12,13^{12,13}. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved7,14,15^{7,14,15}. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate

    Microbial carbon use efficiency promotes global soil carbon storage

    Get PDF
    Funding Information: We thank H. Yang, M. Schrumpf, T. Wutzler, R. Zheng and H. Ma for their comments and suggestions on this study. This work was supported by the National Natural Science Foundation of China (42125503) and the National Key Research and Development Program of China (2020YFA0608000, 2020YFA0607900 and 2021YFC3101600). F.T. was financially supported by China Scholarship Council during his visit at Food and Agricultural Organization of the United Nations (201906210489) and the Max-Planck Institute for Biogeochemistry (202006210289). The contributions of Y.L. were supported through US National Science Foundation DEB 1655499 and 2242034, subcontract CW39470 from Oak Ridge National Laboratory (ORNL) to Cornell University, DOE De-SC0023514, and the USDA National Institute of Food and Agriculture. S.M. has received funding from the ERC under the European Union’s H2020 Research and Innovation Programme (101001608). The contributions of U.M. were supported through a US Department of Energy grant to the Sandia National Laboratories, which is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. We thank the WoSIS database ( https://www.isric.org/explore/wosis ) for providing the publicly available global-scale SOC database used in this study. Publisher Copyright: © 2023, The Author(s).Peer reviewedPublisher PD

    Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood

    Get PDF
    Although recent anthropogenic effects on the global nitrogen (N) cycle have been significant, the consequences of increased anthropogenic N on terrestrial ecosystems are unclear. Studies of the impact of increased reactive N on forest ecosystems—impacts on hydrologic and gaseous loss pathways, retention capacity, and even net primary productivity— have been particularly limited by a lack of long-term baseline biogeochemical data. Stable nitrogen isotope analysis (ratio of ¹⁵N to ¹⁴N, termed δ¹⁵N) of wood chronologies offers the potential to address changes in ecosystem N cycling on millennial timescales and across broad geographic regions. Currently, nearly 50 studies have been published utilizing wood δ¹⁵N records; however, there are significant differences in study design and data interpretation. Here, we identify four categories of wood δ¹⁵N studies, summarize the common themes and primary findings of each category, identify gaps in the spatial and temporal scope of current wood δ¹⁵N chronologies, and synthesize methodological frameworks for future research by presenting eight suggestions for common methodological approaches and enhanced integration across studies. Wood δ¹⁵N records have the potential to provide valuable information for interpreting modern biogeochemical cycling. This review serves to advance the utility of this technique for long-term biogeochemical reconstructions

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Nitrogen and Carbon Isotopic Dynamics of Subarctic Soils and Plants in Southern Yukon Territory and its Implications for Paleoecological and Paleodietary Studies

    Get PDF
    We examine here the carbon and nitrogen isotopic compositions of bulk soils (8 topsoil and 7 subsoils, including two soil profiles) and five different plant parts of 79 C3 plants from two main functional groups: herbs and shrubs/subshrubs, from 18 different locations in grasslands of southern Yukon Territory, Canada (eastern shoreline of Kluane Lake and Whitehorse area). The Kluane Lake region in particular has been identified previously as an analogue for Late Pleistocene eastern Beringia. All topsoils have higher average total nitrogen δ15N and organic carbon δ13C than plants from the same sites with a positive shift occurring with depth in two soil profiles analyzed. All plants analyzed have an average whole plant δ13C of −27.5 ± 1.2 ‰ and foliar δ13C of ±28.0 ± 1.3 ‰, and average whole plant δ15N of −0.3 ± 2.2 ‰ and foliar δ15N of ±0.6 ± 2.7 ‰. Plants analyzed here showed relatively smaller variability in δ13C than δ15N. Their average δ13C after suitable corrections for the Suess effect should be suitable as baseline for interpreting diets of Late Pleistocene herbivores that lived in eastern Beringia. Water availability, nitrogen availability, spacial differences and intra-plant variability are important controls on δ15N of herbaceous plants in the study area. The wider range of δ15N, the more numerous factors that affect nitrogen isotopic composition and their likely differences in the past, however, limit use of the modern N isotopic baseline for vegetation in paleodietary models for such ecosystems. That said, the positive correlation between foliar δ15N and N content shown for the modern plants could support use of plant δ15N as an index for plant N content and therefore forage quality. The modern N isotopic baseline cannot be applied directly to the past, but it is prerequisite to future efforts to detect shifts in N cycling and forage quality since the Late Pleistocene through comparison with fossil plants from the same region
    corecore