66 research outputs found

    Performance of electron and photon triggers in ATLAS during LHC Run 2

    Get PDF
    Abstract: Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for the ATLAS experiment to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena in both proton–proton and heavy-ion collisions. To cope with a fourfold increase of peak LHC luminosity from 2015 to 2018 (Run 2), to 2.1×1034cm-2s-1, and a similar increase in the number of interactions per beam-crossing to about 60, trigger algorithms and selections were optimised to control the rates while retaining a high efficiency for physics analyses. For proton–proton collisions, the single-electron trigger efficiency relative to a single-electron offline selection is at least 75% for an offline electron of 31 GeV, and rises to 96% at 60 GeV; the trigger efficiency of a 25 GeV leg of the primary diphoton trigger relative to a tight offline photon selection is more than 96% for an offline photon of 30 GeV. For heavy-ion collisions, the primary electron and photon trigger efficiencies relative to the corresponding standard offline selections are at least 84% and 95%, respectively, at 5 GeV above the corresponding trigger threshold

    Measurement of the t t ¯ production cross-section and lepton differential distributions in e μ dilepton events from pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: The inclusive top quark pair (tt¯) production cross-section σtt¯ has been measured in proton–proton collisions at s=13TeV, using 36.1 fb-1 of data collected in 2015–2016 by the ATLAS experiment at the LHC. Using events with an opposite-charge eμ pair and b-tagged jets, the cross-section is measured to be: σtt¯=826.4±3.6(stat)±11.5(syst)±15.7(lumi)±1.9(beam)pb, where the uncertainties reflect the limited size of the data sample, experimental and theoretical systematic effects, the integrated luminosity, and the LHC beam energy, giving a total uncertainty of 2.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. It is used to determine the top quark pole mass via the dependence of the predicted cross-section on mtpole, giving mtpole=173.1-2.1+2.0GeV. It is also combined with measurements at s=7TeV and s=8TeV to derive ratios and double ratios of tt¯ and Z cross-sections at different energies. The same event sample is used to measure absolute and normalised differential cross-sections as functions of single-lepton and dilepton kinematic variables, and the results are compared with predictions from various Monte Carlo event generators

    Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b -jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: The results of a search for electroweakino pair production pp→χ~1±χ~20 in which the chargino (χ~1±) decays into a W boson and the lightest neutralino (χ~10), while the heavier neutralino (χ~20) decays into the Standard Model 125 GeV Higgs boson and a second χ~10 are presented. The signal selection requires a pair of b-tagged jets consistent with those from a Higgs boson decay, and either an electron or a muon from the W boson decay, together with missing transverse momentum from the corresponding neutrino and the stable neutralinos. The analysis is based on data corresponding to 139 fb-1 of s=13 TeV pp collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. No statistically significant evidence of an excess of events above the Standard Model expectation is found. Limits are set on the direct production of the electroweakinos in simplified models, assuming pure wino cross-sections. Masses of χ~1±/χ~20 up to 740 GeV are excluded at 95% confidence level for a massless χ~10
    corecore