1,743 research outputs found
Generalized four-point characterization method for resistive and capacitive contacts
In this paper, a four-point characterization method is developed for
resistive samples connected to either resistive or capacitive contacts.
Provided the circuit equivalent of the complete measurement system is known
including coaxial cable and connector capacitances as well as source output and
amplifier input impedances, a frequency range and capacitive scaling factor can
be determined, whereby four-point characterization can be performed. The
technique is demonstrated with a discrete element test sample over a wide
frequency range using lock-in measurement techniques from 1 Hz - 100 kHz. The
data fit well with a circuit simulation of the entire measurement system. A
high impedance preamplifier input stage gives best results, since lock-in input
impedances may differ from manufacturer specifications. The analysis presented
here establishes the utility of capacitive contacts for four-point
characterizations at low frequency.Comment: 21 pages, 10 figure
MUS81 Generates a Subset of MLH1-MLH3–Independent Crossovers in Mammalian Meiosis
Two eukaryotic pathways for processing double-strand breaks (DSBs) as crossovers have been described, one dependent on the MutL homologs Mlh1 and Mlh3, and the other on the structure-specific endonuclease Mus81. Mammalian MUS81 has been implicated in maintenance of genomic stability in somatic cells; however, little is known about its role during meiosis. Mus81-deficient mice were originally reported as being viable and fertile, with normal meiotic progression; however, a more detailed examination of meiotic progression in Mus81-null animals and WT controls reveals significant meiotic defects in the mutants. These include smaller testis size, a depletion of mature epididymal sperm, significantly upregulated accumulation of MLH1 on chromosomes from pachytene meiocytes in an interference-independent fashion, and a subset of meiotic DSBs that fail to be repaired. Interestingly, chiasmata numbers in spermatocytes from Mus81−/− animals are normal, suggesting additional integrated mechanisms controlling the two distinct crossover pathways. This study is the first in-depth analysis of meiotic progression in Mus81-nullizygous mice, and our results implicate the MUS81 pathway as a regulator of crossover frequency and placement in mammals
Genetic recombination is targeted towards gene promoter regions in dogs
The identification of the H3K4 trimethylase, PRDM9, as the gene responsible
for recombination hotspot localization has provided considerable insight into
the mechanisms by which recombination is initiated in mammals. However,
uniquely amongst mammals, canids appear to lack a functional version of PRDM9
and may therefore provide a model for understanding recombination that occurs
in the absence of PRDM9, and thus how PRDM9 functions to shape the
recombination landscape. We have constructed a fine-scale genetic map from
patterns of linkage disequilibrium assessed using high-throughput sequence data
from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties
of recombination appear similar to other mammalian species, our fine-scale
estimates indicate that canine highly elevated recombination rates are observed
in the vicinity of CpG rich regions including gene promoter regions, but show
little association with H3K4 trimethylation marks identified in spermatocytes.
By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show
that biased gene conversion is a plausible mechanism by which the high CpG
content of the dog genome could have occurred.Comment: Updated version, with significant revision
Cohesin Removal along the Chromosome Arms during the First Meiotic Division Depends on a NEK1-PP1γ-WAPL Axis in the Mouse
SummaryMammalian NIMA-like kinase-1 (NEK1) is a dual-specificity kinase highly expressed in mouse germ cells during prophase I of meiosis. Loss of NEK1 induces retention of cohesin on chromosomes at meiotic prophase I. Timely deposition and removal of cohesin is essential for accurate chromosome segregation. Two processes regulate cohesin removal: a non-proteolytic mechanism involving WAPL, sororin, and PDS5B and direct cleavage by separase. Here, we demonstrate a role for NEK1 in the regulation of WAPL loading during meiotic prophase I, via an interaction between NEK1 and PDS5B. This regulation of WAPL by NEK1-PDS5B is mediated by protein phosphatase 1 gamma (PP1γ), which both interacts with and is a phosphotarget of NEK1. Taken together, our results reveal that NEK1 phosphorylates PP1γ, leading to the dephosphorylation of WAPL, which, in turn, results in its retention on chromosome cores to promote loss of cohesion at the end of prophase I in mammals
An Ultra-Compact Ion Mass Spectrometer for Observations of Planetary Ionospheres
The Compact Ion Mass Spectrometer (CIMS) is an ultra-low resource ion mass spectrometer being designed to make observations of low-energy space plasmas such as that in planetary ionospheres. The CIMS utilizes a laminated collimator to define the field-of-view, a laminated electrostatic analyzer to selectively filter ions based on energy-per-charge (E/qM/q), and a microchannel plate with a position sensitive cross-delay anode assembly (XDL/MCP) to detect the location of the ions on the detector plane. This ion mass spectrometer is a simple, compact, and robust instrument ideal for obtaining low-energy (0.1 eV to 1000 eV) ion composition measurements of terrestrial and planetary ionospheres. The combination of the laminated analyzer design, which creates a ribbon-like signal beam, and large area (XDL/MCP) imaging anode allows for a mass resolution (M/ΔM) of approximately sixteen, which is comparable to state-of-the-art ion mass spectrometers. The laminated ESA design incorporates a large number of independent analyzer elements in a grid configuration which allows for the geometric factor, i.e. instrument sensitivity, to be scaled as a function of the total number of elements. This scalability provides for custom CIMS instruments each specifically tailored for a space plasma environment. The concept and operation are intrinsically simple and enable ultrafast (~50 kHz) measurement of plasma ion composition to provide an improved understanding of the physical processes that drive complex ion dynamics in planetary ionospheres. The CIMS’s low-resource constraints make it a viable candidate for implementation in missions requiring multi-point observations using satellite constellations, as a primary payload on a CubeSat platform, or as a science payload on a resource constrained spacecraft destined for planetary environments. We outline the design, simulated instrument response, and initial laboratory results of the CIMS prototype. Additionally, we then use the results from initial calibration tests and our refined electro-optic model to simulate the instrument response in the terrestrial ionosphere and in the vicinity of various planetary bodies in the local solar system
Fear of the unknown: a pre-departure qualitative study of Turkish international students
This paper presents findings from eleven in-depth interviews with Turkish undergraduate students, who were, by the time of data collection, about to spend a semester at a European university under the Erasmus exchange scheme. The students all agreed to be interviewed about their feelings about studying in a foreign culture, and were found to be anxious prior to departure about the quality of accommodation in the new destination, their language ability and the opportunity to form friendships. Fears were expressed about possible misconceptions over Turkey as a Muslim and a developing country. Suggestions are made for HEI interventions to allay student travellers’ concerns
The North Ecliptic Pole Wide survey of AKARI: a near- and mid-infrared source catalog
We present a photometric catalog of infrared (IR) sources based on the North
Ecliptic PoleWide field (NEP-Wide) survey of AKARI, which is an infrared space
telescope launched by Japan. The NEP-Wide survey covered 5.4 deg2 area, a
nearly circular shape centered on the North Ecliptic Pole, using nine
photometric filter-bands from 2 - 25 {\mu}m of the Infrared Camera (IRC).
Extensive efforts were made to reduce possible false objects due to cosmic ray
hits, multiplexer bleeding phenomena around bright sources, and other
artifacts. The number of detected sources varied depending on the filter band:
with about 109,000 sources being cataloged in the near-IR bands at 2 - 5
{\mu}m, about 20,000 sources in the shorter parts of the mid-IR bands between 7
- 11 {\mu}m, and about 16,000 sources in the longer parts of the mid-IR bands,
with \sim 4,000 sources at 24 {\mu}m. The estimated 5? detection limits are
approximately 21 magnitude (mag) in the 2 - 5 {\mu}m bands, 19.5 - 19 mag in
the 7 - 11 {\mu}m, and 18.8 - 18.5 mag in the 15 - 24 {\mu}m bands in the AB
magnitude scale. The completenesses for those bands were evaluated as a
function of magnitude: the 50% completeness limits are about 19.8 mag at 3
{\mu}m, 18.6 mag at 9 {\mu}m, and 18 mag at 18 {\mu}m band, respectively. To
construct a reliable source catalog, all of the detected sources were examined
by matching them with those in other wavelength data, including optical and
ground-based near-IR bands. The final band-merged catalog contains about
114,800 sources detected in the IRC filter bands. The properties of the sources
are presented in terms of the distributions in various color-color diagrams.Comment: Accepted for publication in A&A, 23 pages, 27 figure
Recommended from our members
The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study. Part I: Characterization of large-scale organization and propagation
High-resolution simulations over a large tropical domain (∼20◦S–20◦N and 42◦E–180◦E) using both explicit and parameterized convection are analyzed and compared to observations during a 10-day case study of an active Madden-Julian Oscillation (MJO) event. The parameterized convection model simulations at both 40 km and 12 km grid spacing have a very weak MJO signal and little eastward propagation. A 4 km explicit convection simulation using Smagorinsky subgrid mixing in the vertical and horizontal dimensions exhibits the best MJO strength and propagation speed. 12 km explicit convection simulations also perform much better than the 12 km parameterized convection run, suggesting that the convection scheme, rather than horizontal resolution, is key for these MJO simulations. Interestingly, a 4 km explicit convection simulation using the conventional boundary layer scheme for vertical subgrid mixing (but still using Smagorinsky horizontal mixing) completely loses the large-scale MJO organization, showing that relatively high resolution with explicit convection does not guarantee a good MJO simulation. Models with a good MJO representation have a more realistic relationship between lower-free-tropospheric moisture and precipitation, supporting the idea that moisture-convection feedback is a key process for MJO propagation. There is also increased generation of available potential energy and conversion of that energy into kinetic energy in models with a more realistic MJO, which is related to larger zonal variance in convective heating and vertical velocity, larger zonal temperature variance around 200 hPa, and larger correlations between temperature and ascent (and between temperature and diabatic heating) between 500–400 hPa
Recommended from our members
Does convective aggregation need to be represented in cumulus parameterizations?
Tropical deep convection exhibits a variety of levels of aggregation over a wide range of scales. Based on a multisatellite analysis, the present study shows at mesoscale that different levels of aggregation are statistically associated with differing large-scale atmospheric states, despite similar convective intensity and large-scale forcings. The more aggregated the convection, the dryer and less cloudy the atmosphere, the stronger the outgoing longwave radiation, and the lower the planetary albedo. This suggests that mesoscale convective aggregation has the potential to affect couplings between moisture and convection and between convection, radiation, and large-scale ascent. In so doing, aggregation may play a role in phenomena such as “hot spots” or the Madden-Julian Oscillation. These findings support the need for the representation of mesoscale organization in cumulus parameterizations; most parameterizations used in current climate models lack any such representation. The ability of a cloud system-resolving model to reproduce observed relationships suggests that such models may be useful to guide attempts at parameterizations of convective aggregation
- …