78 research outputs found

    Measurements of the pp -> W-+/-gamma gamma and pp -> Z gamma gamma cross sections at root s=13 TeV and limits on anomalous quartic gauge couplings

    Get PDF
    The cross section for W or Z boson production in association with two photons is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data set corresponds to an integrated luminosity of 137 fb(-1) collected by the CMS experiment at the LHC. The W -> l nu and Z -> ll decay modes (where l = e, mu) are used to extract the W gamma gamma and Z gamma gamma cross sections in a phase space defined by electron (muon) with transverse momentum larger than 30 GeV and photon transverse momentum larger than 20 GeV. All leptons and photons are required to have absolute pseudorapidity smaller than 2.5. The measured cross sections in this phase space are sigma(W gamma gamma) = 13.6(-1.9)(+1.9) (stat)(-4.0)(+4.0) (syst) +/- 0.08 (PDF + scale) fb and sigma(Z gamma gamma) = 5.41(-0.55)(+0.58) (stat)(-0.70)(+0.64) (syst) +/- 0.06 (PDF + scale) fb. Limits on anomalous quartic gauge couplings are set in the framework of an effective field theory with dimension-8 operators.Peer reviewe

    Angular analysis of the decay B+ -> K+mu(+)mu(-) in proton-proton collisions at root s=8 TeV

    Get PDF
    The angular distribution of the flavor-changing neutral current decay B+ -> K+mu(+)mu(-) is studied in proton-proton collisions at a center-of-mass energy of 8 TeV. The analysis is based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb(-1). The forward-backward asymmetry A(FB) of the dimuon system and the contribution F-H from the pseudoscalar, scalar, and tensor amplitudes to the decay width are measured as a function of the dimuon mass squared. The measurements are consistent with the standard model expectations.Peer reviewe

    Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv: https://arxiv.org/abs/2112.03949.Copyright © 2022 CERN, for the benefit of the CMS Collaboration. Abstract A search is presented for a right-handed W boson (WR) and a heavy neutrino (N), in a final state consisting of two same-flavor leptons (ee or μμ) and two quarks. The search is performed with the CMS experiment at the CERN LHC using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb−1. The search covers two regions of phase space, one where the decay products of the heavy neutrino are merged into a single large-area jet, and one where the decay products are well separated. The expected signal is characterized by an excess in the invariant mass distribution of the final-state objects. No significant excess over the standard model background expectations is observed. The observations are interpreted as upper limits on the product of WR production cross sections and branching fractions assuming that couplings are identical to those of the standard model W boson. For N masses mN equal to half the WR mass mWR {m}_{{\mathrm{W}}_{\mathrm{R}}} m W R (mN = 0.2 TeV), mWR {m}_{{\mathrm{W}}_{\mathrm{R}}} m W R is excluded at 95% confidence level up to 4.7 (4.8) and 5.0 (5.4) TeV for the electron and muon channels, respectively. This analysis provides the most stringent limits on the WR mass to date.SCOAP3

    Study of quark and gluon jet substructure in Z+jet and dijet events from pp collisions

    Get PDF
    A preprint version of the article is available at arXiv (https://arxiv.org/abs/2109.03340).Copyright © 2022 CERN. Measurements of jet substructure describing the composition of quark- and gluon-initiated jets are presented. Proton-proton (pp) collision data at s√ = 13 TeV collected with the CMS detector are used, corresponding to an integrated luminosity of 35.9 fb−1. Generalized angularities are measured that characterize the jet substructure and distinguish quark- and gluon-initiated jets. These observables are sensitive to the distributions of transverse momenta and angular distances within a jet. The analysis is performed using a data sample of dijet events enriched in gluon-initiated jets, and, for the first time, a Z+jet event sample enriched in quark-initiated jets. The observables are measured in bins of jet transverse momentum, and as a function of the jet radius parameter. Each measurement is repeated applying a “soft drop” grooming procedure that removes soft and large angle radiation from the jet. Using these measurements, the ability of various models to describe jet substructure is assessed, showing a clear need for improvements in Monte Carlo generators.SCOAP3

    Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at s√ = 13 TeV

    Get PDF
    Copyright © CERN, for the benefit of the CMS Collaboration.. A measurement of inclusive four-jet production in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The transverse momenta of jets within |η| < 4.7 are required to exceed 35, 30, 25, and 20 GeV for the first-, second-, third-, and fourth-leading jet, respectively. Differential cross sections are measured as functions of the jet transverse momentum, jet pseudorapidity, and several other observables that describe the angular correlations between the jets. The measured distributions show sensitivity to different aspects of the underlying event, parton shower modeling, and matrix element calculations. In particular, the interplay between angular correlations caused by parton shower and double-parton scattering contributions is shown to be important. The double-parton scattering contribution is extracted by means of a template fit to the data, using distributions for single-parton scattering obtained from Monte Carlo event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data. The effective double-parton scattering cross section is calculated and discussed in view of previous measurements and of its dependence on the models used to describe the single-parton scattering background.SCOAP3

    Study of Z boson plus jets events using variables sensitive to double-parton scattering in pp collisions at 13 TeV

    Get PDF
    Double-parton scattering is investigated using events with a Z boson and jets. The Z boson is reconstructed using only the dimuon channel. The measurements are performed with proton-proton collision data recorded by the CMS experiment at the LHC at root s = 13TeV, corresponding to an integrated luminosity of 35.9 fb(-1) collected in the year 2016. Differential cross sections of Z+ >= 1 jet and Z+ >= 2 jets are measured with transverse momentum of the jets above 20 GeV and pseudorapidity vertical bar eta vertical bar < 2.4. Several distributions with sensitivity to double-parton scattering effects are measured as functions of the angle and the transverse momentum imbalance between the Z boson and the jets. The measured distributions are compared with predictions from several event generators with different hadronization models and different parameter settings for multiparton interactions. The measured distributions show a dependence on the hadronization and multiparton interaction simulation parameters, and are important input for future improvements of the simulations.Peer reviewe

    Proton reconstruction with the CMS-TOTEM Precision Proton Spectrometer

    No full text
    The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb-1 in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider

    Search for central exclusive production of top quark pairs in proton-proton collisions at sqrt{s} = 13 TeV with tagged protons

    No full text

    Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at sqrt(s)=13 TeV

    No full text

    Extracting the speed of sound in quark–gluon plasma with ultrarelativistic lead–lead collisions at the LHC

    No full text
    Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we determine the speed of sound in an extended volume of quark-gluon plasma using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb-1. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of0.241±0.002(stat)±0.016(syst)in natural units. The effective medium temperature, estimated using the mean transverse momentum, is219±8(syst)MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions
    corecore