1,570 research outputs found

    On DDO154 and Cold Dark Matter halo profiles

    Full text link
    We investigate the claim by Burkert and Silk (1997) that the observed rotation curve of the dwarf irregular galaxy DDO154 cannot be reconciled with the universal CDM halo profile of Navarro, Frenk & White (1996,1997) even when allowance is made for the effect of violent gas outflow events on the structure of the galaxy. By means of N-body simulations we show that under certain conditions it is possible to obtain a reasonable fit to the observed rotation curve without invoking Burkert & Silk's proposed spheroidal MACHO component. We are able to best reproduce the observed decline in the rotation curve by postulating additional hidden disc mass, in an amount that is compatible with disc stability requirements. In the process we improve upon the results of Navarro, Eke & Frenk (1996) on the formation of halo cores by mass loss by using actual haloes from Cold Dark Matter simulations instead of Hernquist (1990) distributions.Comment: LaTeX (mn.sty), 8 pages, 6 figures included; updated to match final version to appear in MNRA

    Disk Evolution and Bar Triggering Driven by Interactions with Dark Matter Substructure

    Full text link
    We study formation and evolution of bar-disk systems in fully self-consistent cosmological simulations of galaxy formation in the LCDM WMAP3 Universe. In a representative model we find that the first generation of bars form in response to the asymmetric dark matter (DM) distribution (i.e., DM filament) and quickly decay. Subsequent bar generations form and are destroyed during the major merger epoch permeated by interactions with a DM substructure (subhalos). A long-lived bar is triggered by a tide from a subhalo and survives for ~10 Gyr. The evolution of this bar is followed during the subsequent numerous minor mergers and interactions with the substructure. Together with intrinsic factors, these interactions largely determine the stellar bar evolution. The bar strength and its pattern speed anticorrelate, except during interactions and when the secondary (nuclear) bar is present. For about 5 Gyr bar pattern speed increases substantially despite the loss of angular momentum to stars and cuspy DM halo. We analyze the evolution of stellar populations in the bar-disk and relate them to the underlying dynamics. While the bar is made mainly of an intermediate age, ~5-6 Gyr, disk stars at z=0, a secondary nuclear bar which surfaces at z~0.1 is made of younger, ~1-3 Gyr stars.Comment: 5 pages, 5 figures, accepted for publication in ApJ Letter

    Dissecting Galaxy Formation: II. Comparing Substructure in Pure Dark Matter and Baryonic Models

    Get PDF
    We compare the substructure evolution in pure dark matter (DM) halos with those in the presence of baryons (PDM and BDM). The prime halos have been analyzed by Romano-Diaz et al (2009). Models have been evolved from identical initial conditions using Constrained Realizations, including star formation and feedback. A comprehensive catalog of subhalos has been compiled and properties of subhalos analyzed in the mass range of 10^8 Mo - 10^11 Mo. We find that subhalo mass functions are consistent with a single power law, M_sbh^{alpha}, but detect a nonnegligible shift between these functions, alpha -0.86 for the PDM, and -0.98 for the BDM. Overall, alpha const. in time with variations of +-15%. Second, we find that the radial mass distribution of subhalos can be approximated by a power law, R^{gamma} with a steepening around the radius of a maximal circular velocity, Rvmax, in the prime halos. Gamma ~-1.5 for the PDM and -1 for the BDM, inside Rvmax, and is steeper outside. We detect little spatial bias between the subhalo populations and the DM of the main halos. The subhalo population exhibits much less triaxiality with baryons, in tandem with the prime halo. Finally, we find that, counter-intuitively, the BDM population is depleted at a faster rate than the PDM one within the central 30kpc of the prime. Although the baryons provide a substantial glue to the subhalos, the main halos exhibit the same trend. This assures a more efficient tidal disruption of the BDM subhalos. This effect can be reversed for a more efficient feedback from stellar evolution and supermassive black holes, which will expel baryons from the center and decrease the concentration of the prime halo. We compare our results with via Lactea and Aquarius simulations and other published results.Comment: 12 pages, 9 figures, to be published by the Astrophysical Journa

    Constrained simulations of the Local Group: on the radial distribution of substructures

    Full text link
    We examine the properties of satellites found in high resolution simulations of the local group. We use constrained simulations designed to reproduce the main dynamical features that characterize the local neighborhood, i.e. within tens of Mpc around the Local Group (LG). Specifically, a LG-like object is found located within the 'correct' dynamical environment and consisting of three main objects which are associated with the Milky Way, M31 and M33. By running two simulations of this LG from identical initial conditions - one with and one without baryons modeled hydrodynamically - we can quantify the effect of gas physics on the z=0z=0 population of subhaloes in an environment similar to our own. We find that above a certain mass cut, Msub>2×108h−1M⊙M_{\rm sub} > 2\times10^{8}h^{-1} M_{\odot} subhaloes in hydrodynamic simulations are more radially concentrated than those in simulations with out gas. This is caused by the collapse of baryons into stars that typically sit in the central regions of subhaloes, making them denser. The increased central density of such a subhalo, results in less mass loss due to tidal stripping than the same subhalo simulated with only dark matter. The increased mass in hydrodynamic subhaloes with respect to dark matter ones, causes dynamical friction to be more effective, dragging the subhalo towards the centre of the host. This results in these subhaloes being effectively more radially concentrated then their dark matter counterparts.Comment: 12 pages, 9 figure

    On the physical origin of dark matter density profiles

    Full text link
    The radial mass distribution of dark matter haloes is investigated within the framework of the spherical infall model. We present a new formulation of spherical collapse including non-radial motions, and compare the analytical profiles with a set of high-resolution N-body simulations ranging from galactic to cluster scales. We argue that the dark matter density profile is entirely determined by the initial conditions, which are described by only two parameters: the height of the primordial peak and the smoothing scale. These are physically meaningful quantities in our model, related to the mass and formation time of the halo. Angular momentum is dominated by velocity dispersion, and it is responsible for the shape of the density profile near the centre. The phase-space density of our simulated haloes is well described by a power-law profile, rho/sigma^3 = 10^{1.46\pm0.04} (rho_c/Vvir^3) (r/Rvir)^{-1.90\pm0.05}. Setting the eccentricity of particle orbits according to the numerical results, our model is able to reproduce the mass distribution of individual haloes.Comment: 12 pages, 13 figures, submitted to MNRA

    Dynamical difference between the cD galaxy and the stellar diffuse component in simulated galaxy clusters

    Full text link
    Member galaxies within galaxy clusters nowadays can be routinely identified in cosmological, hydrodynamical simulations using methods based on identifying self bound, locally over dense substructures. However, distinguishing the central galaxy from the stellar diffuse component within clusters is notoriously difficult, and in the center it is not even clear if two distinct stellar populations exist. Here, after subtracting all member galaxies, we use the velocity distribution of the remaining stars and detect two dynamically, well-distinct stellar components within simulated galaxy clusters. These differences in the dynamics can be used to apply an un-binding procedure which leads to a spatial separation of the two components into a cD and a diffuse stellar component (DSC). Applying our new algorithm to a cosmological, hydrodynamical simulation we find that -- in line with previous studies -- these two components have clearly distinguished spatial and velocity distributions as well as different star formation histories. We show that the DSC fraction -- which can broadly be associated with the observed intra cluster light -- does not depend on the virial mass of the galaxy cluster and is much more sensitive to the formation history of the cluster. We conclude that the separation of the cD and the DSC in simulations, based on our dynamical criteria, is more physically motivated than current methods which depend on implicit assumptions on a length scale associated with the cD galaxy and therefore represent a step forward in understanding the different stellar components within galaxy clusters. Our results also show the importance of analyzing the dynamics of the DSC to characterize its properties and understand its origin.Comment: 15 pages, 18 figures, MNRAS in pres

    ccz-1 mediates the digestion of apoptotic corpses in C. elegans

    Get PDF
    During development, the processes of cell division, differentiation and apoptosis must be precisely coordinated in order to maintain tissue homeostasis. The nematode C. elegans is a powerful model system in which to study cell death and its control. C. elegans apoptotic cells condense and form refractile corpses under differential interference contrast (DIC) microscopy. Activation of the GTPase CED-10 (Rac) in a neighbouring cell mediates the recognition and engulfment of the cell corpse. After inclusion of the engulfed corpse in a phagosome, different proteins are sequentially recruited onto this organelle to promote its acidification and fusion with lysosomes, leading to the enzymatic degradation of the cell corpse. We show that CCZ-1, a protein conserved from yeasts to humans, mediates the digestion of these apoptotic corpses. CCZ-1 seems to act in lysosome biogenesis and phagosome maturation by recruiting the GTPase RAB-7 over the phagosome

    Density profiles of dark matter haloes on Galactic and Cluster scales

    Full text link
    In the present paper, we improve the "Extended Secondary Infall Model" (ESIM) of Williams et al. (2004) to obtain further insights on the cusp/core problem. The model takes into account the effect of ordered and random angular momentum, dynamical friction and baryon adiabatic contraction in order to obtain a secondary infall model more close to the collapse reality. The model is applied to structures on galactic scales (normal and dwarf spiral galaxies) and on cluster of galaxies scales. The results obtained suggest that angular momentum and dynamical friction are able, on galactic scales, to overcome the competing effect of adiabatic contraction eliminating the cusp. The NFW profile can be reobtained, in our model only if the system is constituted just by dark matter and the magnitude of angular momentum and dynamical friction are reduced with respect to the values predicted by the model itself. The rotation curves of four LSB galaxies from de Blok & Bosma (2002) are compared to the rotation curves obtained by the model in the present paper obtaining a good fit to the observational data. On scales smaller than ≃1011h−1M⊙\simeq 10^{11} h^{-1} M_{\odot} the slope α≃0\alpha \simeq 0 and on cluster scales we observe a similar evolution of the dark matter density profile but in this case the density profile slope flattens to α≃0.6\alpha \simeq 0.6 for a cluster of ≃1014h−1M⊙\simeq 10^{14} h^{-1} M_{\odot}. The total mass profile, differently from that of dark matter, shows a central cusp well fitted by a NFW model.Comment: 26 pages; 4 figures A&A Accepte
    • 

    corecore