3,993 research outputs found

    Disk Evolution and Bar Triggering Driven by Interactions with Dark Matter Substructure

    Full text link
    We study formation and evolution of bar-disk systems in fully self-consistent cosmological simulations of galaxy formation in the LCDM WMAP3 Universe. In a representative model we find that the first generation of bars form in response to the asymmetric dark matter (DM) distribution (i.e., DM filament) and quickly decay. Subsequent bar generations form and are destroyed during the major merger epoch permeated by interactions with a DM substructure (subhalos). A long-lived bar is triggered by a tide from a subhalo and survives for ~10 Gyr. The evolution of this bar is followed during the subsequent numerous minor mergers and interactions with the substructure. Together with intrinsic factors, these interactions largely determine the stellar bar evolution. The bar strength and its pattern speed anticorrelate, except during interactions and when the secondary (nuclear) bar is present. For about 5 Gyr bar pattern speed increases substantially despite the loss of angular momentum to stars and cuspy DM halo. We analyze the evolution of stellar populations in the bar-disk and relate them to the underlying dynamics. While the bar is made mainly of an intermediate age, ~5-6 Gyr, disk stars at z=0, a secondary nuclear bar which surfaces at z~0.1 is made of younger, ~1-3 Gyr stars.Comment: 5 pages, 5 figures, accepted for publication in ApJ Letter

    The Dark Side of QSO Formation at High Redshifts

    Full text link
    Observed high-redshift QSOs, at z~6, may reside in massive dark matter (DM) halos of more than 10^{12} Msun and are thus expected to be surrounded by overdense regions. In a series of 10 constrained simulations, we have tested the environment of such QSOs. Comparing the computed overdensities with respect to the unconstrained simulations of regions empty of QSOs, assuming there is no bias between the DM and baryon distributions, and invoking an observationally-constrained duty-cycle for Lyman Break Galaxies, we have obtained the galaxy count number for the QSO environment. We find that a clear discrepancy exists between the computed and observed galaxy counts in the Kim et al. (2009) samples. Our simulations predict that on average eight z~6 galaxies per QSO field should have been observed, while Kim et al. detect on average four galaxies per QSO field compared to an average of three galaxies in a control sample (GOODS fields). While we cannot rule out a small number statistics for the observed fields to high confidence, the discrepancy suggests that galaxy formation in the QSO neighborhood proceeds differently than in the field. We also find that QSO halos are the most massive of the simulated volume at z~6 but this is no longer true at z~3. This implies that QSO halos, even in the case they are the most massive ones at high redshifts, do not evolve into most massive galaxy clusters at z=0.Comment: 12 pages, 7 figures, revised after the referee comments, to be published by the Astrophysical Journa

    Observational Properties of Simulated Galaxies in Overdense and Average Regions at High Redshifts z= 6-12

    Get PDF
    We use high-resolution zoom-in cosmological simulations of galaxies of Romano-Diaz et al., post-processing them with a panchromatic three-dimensional radiation transfer code to obtain the galaxy UV luminosity function (LF) at z ~ 6-12. The galaxies are followed in a rare, heavily overdense region within a ~ 5-sigma density peak, which can host high-z quasars, and in an average density region, down to the stellar mass of M_star ~ 4* 10^7 Msun. We find that the overdense regions evolve at a substantially accelerated pace --- the most massive galaxy has grown to M_star ~ 8.4*10^10 Msun by z = 6.3, contains dust of M_dust~ 4.1*10^8 Msun, and is associated with a very high star formation rate, SFR ~ 745 Msun/yr.The attained SFR-M_star correlation results in the specific SFR slowly increasing with M_star. Most of the UV radiation in massive galaxies is absorbed by the dust, its escape fraction f_esc is low, increasing slowly with time. Galaxies in the average region have less dust, and agree with the observed UV LF. The LF of the overdense region is substantially higher, and contains much brighter galaxies. The massive galaxies are bright in the infrared (IR) due to the dust thermal emission, with L_IR~ 3.7*10^12 Lsun at z = 6.3, while L_IR < 10^11 Lsun for the low-mass galaxies. Therefore, ALMA can probe massive galaxies in the overdense region up to z ~ 10 with a reasonable integration time. The UV spectral properties of disky galaxies depend significantly upon the viewing angle.The stellar and dust masses of the most massive galaxy in the overdense region are comparable to those of the sub-millimetre galaxy (SMG) found by Riechers et al. at z = 6.3, while the modelled SFR and the sub-millimetre flux fall slightly below the observed one. Statistical significance of these similarities and differences will only become clear with the upcoming ALMA observations.Comment: 17 pages, 13 figures, accepted for publication in MNRA

    Erasing Dark Matter Cusps in Cosmological Galactic Halos with Baryons

    Full text link
    We study the central dark matter (DM) cusp evolution in cosmological galactic halos. Models with and without baryons (baryons+DM, hereafter BDM model, and pure DM, PDM model, respectively) are advanced from identical initial conditions. The DM cusp properties are contrasted by a direct comparison of pure DM and baryonic models. We find a divergent evolution between the PDM and BDM models within the inner ~10 kpc region. The PDM model forms a R^{-1} cusp as expected, while the DM in the BDM model forms a larger isothermal cusp R^{-2} instead. The isothermal cusp is stable until z~1 when it gradually levels off. This leveling proceeds from inside out and the final density slope is shallower than -1 within the central 3 kpc (i.e., expected size of the R^{-1} cusp), tending to a flat core within ~2 kpc. This effect cannot be explained by a finite resolution of our code which produces only a 5% difference between the gravitationally softened force and the exact Newtonian force of point masses at 1 kpc from the center. Neither is it related to the energy feedback from stellar evolution or angular momentum transfer from the bar. Instead it can be associated with the action of DM+baryon subhalos heating up the cusp region via dynamical friction and forcing the DM in the cusp to flow out and to `cool' down. The process described here is not limited to low z and can be efficient at intermediate and even high z.Comment: 4 pages, 4 figures, accepted for publication by the Astrophysical Journal Letters. Minor corrections following the referee repor

    Dissecting Galaxy Formation: II. Comparing Substructure in Pure Dark Matter and Baryonic Models

    Get PDF
    We compare the substructure evolution in pure dark matter (DM) halos with those in the presence of baryons (PDM and BDM). The prime halos have been analyzed by Romano-Diaz et al (2009). Models have been evolved from identical initial conditions using Constrained Realizations, including star formation and feedback. A comprehensive catalog of subhalos has been compiled and properties of subhalos analyzed in the mass range of 10^8 Mo - 10^11 Mo. We find that subhalo mass functions are consistent with a single power law, M_sbh^{alpha}, but detect a nonnegligible shift between these functions, alpha -0.86 for the PDM, and -0.98 for the BDM. Overall, alpha const. in time with variations of +-15%. Second, we find that the radial mass distribution of subhalos can be approximated by a power law, R^{gamma} with a steepening around the radius of a maximal circular velocity, Rvmax, in the prime halos. Gamma ~-1.5 for the PDM and -1 for the BDM, inside Rvmax, and is steeper outside. We detect little spatial bias between the subhalo populations and the DM of the main halos. The subhalo population exhibits much less triaxiality with baryons, in tandem with the prime halo. Finally, we find that, counter-intuitively, the BDM population is depleted at a faster rate than the PDM one within the central 30kpc of the prime. Although the baryons provide a substantial glue to the subhalos, the main halos exhibit the same trend. This assures a more efficient tidal disruption of the BDM subhalos. This effect can be reversed for a more efficient feedback from stellar evolution and supermassive black holes, which will expel baryons from the center and decrease the concentration of the prime halo. We compare our results with via Lactea and Aquarius simulations and other published results.Comment: 12 pages, 9 figures, to be published by the Astrophysical Journa

    Weak lensing evidence for a filament between A222/A223

    Full text link
    We present a weak lensing analysis and comparison to optical and X-ray maps of the close pair of massive clusters A222/223. Indications for a filamentary connection between the clusters are found and discussed.Comment: 6 pages, 1 figure. To appear in Proc. IAU Colloquium 195: Outskirts of Galaxy Clusters - Intense Life in the Suburbs. Version with higher resolution available at http://www.astro.uni-bonn.de/~dietrich/torino_proc.ps.g
    • …
    corecore