35 research outputs found

    Exploring calibration algorithms to maximize the null depth in KPIC's vortex fiber nulling mode

    Full text link
    Vortex fiber nulling (VFN) is a new interferometric technique with the potential to unlock the ability to detect and spectroscopically characterize exoplanets at angular separations smaller than the conventional diffraction limit of λ\lambda/D. In early 2022, a VFN mode was added to the Keck Planet Imager and Characterizer (KPIC) instrument suite on Keck II. VFN operates by adding an azimuthal phase ramp to the incident wavefront so that light from the star at the center of the field is prevented from coupling into a single-mode fiber. One of the key performance goals of VFN is to minimize the ratio of on-axis starlight coupling to off-axis planet coupling, which requires minimizing the wavefront aberrations of light being injected into the fiber. Non-common path aberrations can be calibrated during the daytime and compensated for with the KPIC deformable mirror during nighttime observing. By applying different amplitudes of low-order Zernike modes, we determine which combinations maximize the system performance. Here we present our work developing and testing different procedures to estimate the incident aberrations, both in simulation and on the Keck bench. The current iteration of this calibration algorithm has been used successfully for VFN observing, and there are several avenues for improvement.Comment: 14 pages, 10 figures, to be published in SPIE Proceedings associated with the 2023 SPIE Optics and Photonics Conferenc

    Vortex Fiber Nulling for Exoplanet Observations: Implementation and First Light

    Full text link
    Vortex fiber nulling (VFN) is a single-aperture interferometric technique for detecting and characterizing exoplanets separated from their host star by less than a diffracted beam width. VFN uses a vortex mask and single mode fiber to selectively reject starlight while coupling off-axis planet light with a simple optical design that can be readily implemented on existing direct imaging instruments that can feed light to an optical fiber. With its axially symmetric coupling region peaking within the inner working angle of conventional coronagraphs, VFN is more efficient at detecting new companions at small separations than conventional direct imaging, thereby increasing the yield of on-going exoplanet search campaigns. We deployed a VFN mode operating in K band (2.02.5 μ2.0{-}2.5~\mum) on the Keck Planet Imager and Characterizer (KPIC) instrument at the Keck II Telescope. In this paper we present the instrument design of this first on-sky demonstration of VFN and the results from on-sky commissioning, including planet and star throughput measurements and predicted flux-ratio detection limits for close-in companions. The instrument performance is shown to be sufficient for detecting a companion 10310^3 times fainter than a 5th5^{\mathrm{th}} magnitude host star in 1 hour at a separation of 50 mas (1.1λ/D\lambda/D). This makes the instrument capable of efficiently detecting substellar companions around young stars. We also discuss several routes for improvement that will reduce the required integration time for a detection by a factor >{>}3.Comment: 26 pages, 5 figures; Accepted to JATI

    Quantitative analysis of performance on a progressive-ratio schedule: effects of reinforcer type, food deprivation and acute treatment with Δ⁹-tetrahydrocannabinol (THC)

    Get PDF
    Rats’ performance on a progressive-ratio schedule maintained by sucrose (0.6 M, 50 μl) and corn oil (100%, 25 μl) reinforcers was assessed using a model derived from Killeen’s (1994) theory of scheduled-controlled behaviour, ‘Mathematical Principles of Reinforcement’. When the rats were maintained at 80% of their free-feeding body weights, the parameter expressing incentive value, a, was greater for the corn oil than for the sucrose reinforcer; the response-time parameter, δ, did not differ between the reinforcer types, but a parameter derived from the linear waiting principle (Tₒ), indicated that the minimum post-reinforcement pause was longer for corn oil than for sucrose. When the rats were maintained under free-feeding conditions, a was reduced, indicating a reduction of incentive value, but δ was unaltered. Under the food-deprived condition, the CB1 cannabinoid receptor agonist Δ⁹-tetrahydrocannabinol (THC: 0.3, 1 and 3 mg kg-1) increased the value of sucrose; none of the other parameters was affected by THC. The results provide new information about the sensitivity of the model’s parameters to deprivation and reinforcer quality, and suggest that THC selectively enhances the incentive value of sucrose

    Perceptual and conceptual processing of visual objects across the adult lifespan

    Get PDF
    Abstract: Making sense of the external world is vital for multiple domains of cognition, and so it is crucial that object recognition is maintained across the lifespan. We investigated age differences in perceptual and conceptual processing of visual objects in a population-derived sample of 85 healthy adults (24–87 years old) by relating measures of object processing to cognition across the lifespan. Magnetoencephalography (MEG) was recorded during a picture naming task to provide a direct measure of neural activity, that is not confounded by age-related vascular changes. Multiple linear regression was used to estimate neural responsivity for each individual, namely the capacity to represent visual or semantic information relating to the pictures. We find that the capacity to represent semantic information is linked to higher naming accuracy, a measure of task-specific performance. In mature adults, the capacity to represent semantic information also correlated with higher levels of fluid intelligence, reflecting domain-general performance. In contrast, the latency of visual processing did not relate to measures of cognition. These results indicate that neural responsivity measures relate to naming accuracy and fluid intelligence. We propose that maintaining neural responsivity in older age confers benefits in task-related and domain-general cognitive processes, supporting the brain maintenance view of healthy cognitive ageing

    Poorer White Matter Microstructure Predicts Slower and More Variable Reaction Time Performance: Evidence for a Neural Noise Hypothesis in a Large Lifespan Cohort

    Get PDF
    Most prior research has focused on characterizing averages in cognition, brain characteristics, or behavior, and attempting to predict differences in these averages among individuals. However, this overwhelming focus on mean levels may leave us with an incomplete picture of what drives individual differences in behavioral phenotypes by ignoring the variability of behavior around an individual's mean. In particular, enhanced white matter (WM) structural microstructure has been hypothesized to support consistent behavioral performance by decreasing Gaussian noise in signal transfer. Conversely, lower indices of WM microstructure are associated with greater within-subject variance in the ability to deploy performance-related resources, especially in clinical populations. We tested a mechanistic account of the “neural noise” hypothesis in a large adult lifespan cohort (Cambridge Centre for Ageing and Neuroscience) with over 2500 adults (ages 18-102; 1508 female; 1173 male; 2681 behavioral sessions; 708 MRI scans) using WM fractional anisotropy to predict mean levels and variability in reaction time performance on a simple behavioral task using a dynamic structural equation model. By modeling robust and reliable individual differences in within-person variability, we found support for a neural noise hypothesis (Kail, 1997), with lower fractional anisotropy predicted individual differences in separable components of behavioral performance estimated using dynamic structural equation model, including slower mean responses and increased variability. These effects remained when including age, suggesting consistent effects of WM microstructure across the adult lifespan unique from concurrent effects of aging. Crucially, we show that variability can be reliably separated from mean performance using advanced modeling tools, enabling tests of distinct hypotheses for each component of performance

    Distinct components of cardiovascular health are linked with age-related differences in cognitive abilities

    Get PDF
    Cardiovascular ageing contributes to cognitive impairment. However, the unique and synergistic contributions of multiple cardiovascular factors to cognitive function remain unclear because they are often condensed into a single composite score or examined in isolation. We hypothesized that vascular risk factors, electrocardiographic features and blood pressure indices reveal multiple latent vascular factors, with independent contributions to cognition. In a population-based deep-phenotyping study (n = 708, age 18–88), path analysis revealed three latent vascular factors dissociating the autonomic nervous system response from two components of blood pressure. These three factors made unique and additive contributions to the variability in crystallized and fluid intelligence. The discrepancy in fluid relative to crystallized intelligence, indicative of cognitive decline, was associated with a latent vascular factor predominantly expressing pulse pressure. This suggests that higher pulse pressure is associated with cognitive decline from expected performance. The effect was stronger in older adults. Controlling pulse pressure may help to preserve cognition, particularly in older adults. Our findings highlight the need to better understand the multifactorial nature of vascular aging

    Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group.The control of voluntary movement changes markedly with age. A critical component of motor control is the integration of sensory information with predictions of the consequences of action, arising from internal models of movement. This leads to sensorimotor attenuation – a reduction in the perceived intensity of sensations from self-generated compared to external actions. Here we show that sensorimotor attenuation occurs in 98% of adults in a population-based cohort (n=325; 18-88 years; the Cambridge Centre for Ageing and Neuroscience). Importantly, attenuation increases with age, in proportion to reduced sensory sensitivity. This effect is associated with differences in the structure and functional connectivity of the pre-supplementary motor area (pre-SMA), assessed with magnetic resonance imaging. The results suggest that ageing alters the balance between the sensorium and predictive models, mediated by the pre-SMA and its connectivity in frontostriatal circuits. This shift may contribute to the motor and cognitive changes observed with age.Cam-CAN research was supported by the Biotechnology and Biological Sciences Research Council (BB/H008217/1). JBR and NW were supported by the James S. McDonnell Foundation 21st Century Science Initiative, Scholar Award in Understanding Human Cognition. JBR was also supported by Wellcome Trust [103838] and the Medical Research Council [MC-A060-5PQ30]. DMW was supported by the Wellcome Trust [097803], Human Frontier Science Program and the Royal Society Noreen Murray Professorship in Neurobiology. RNH was supported by the Medical Research Council [MC-A060-5PR10]. RAK was supported by a Sir Henry Wellcome Trust Postdoctoral Fellowship [107392]. LG was funded by a Rubicon grant from the Netherlands Organisation for Scientific Research (NWO)

    Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation

    Get PDF
    Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495–45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13–1.18; p = 8.35 × 10−30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER−) breast cancer (lead SNP rs6864776: per-a allele OR ER− = 1.10; 95% CI 1.05–1.14; p conditional = 1.44 × 10−12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09–1.15; p conditional = 1.12 × 10−05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis

    Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.

    Get PDF
    We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.352

    Preserved cognitive functions with age are determined by domain-dependent shifts in network responsivity

    Get PDF
    Healthy ageing has disparate effects on different cognitive domains. The neural basis of these differences, however, is largely unknown. We investigated this question by using Independent Components Analysis to obtain functional brain components from 98 healthy participants aged 23–87 years from the population-based Cam-CAN cohort. Participants performed two cognitive tasks that show age-related decrease (fluid intelligence and object naming) and a syntactic comprehension task that shows age-related preservation. We report that activation of task-positive neural components predicts inter-individual differences in performance in each task across the adult lifespan. Furthermore, only the two tasks that show performance declines with age show age-related decreases in task-positive activation of neural components and decreasing default mode (DM) suppression. Our results suggest that distributed, multi-component brain responsivity supports cognition across the adult lifespan, and the maintenance of this, along with maintained DM deactivation, characterizes successful ageing and may explain differential ageing trajectories across cognitive domains.The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) research was supported by the Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1). K.A.T. is supported by Wellcome Trust (RG73750-RRZA/040) and British Academy Postdoctoral Fellowship (PF160048)
    corecore