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Most prior research has focused on characterizing averages in cognition, brain characteristics, or behavior, and
attempting to predict differences in these averages among individuals. However, this overwhelming focus on mean
levels may leave us with an incomplete picture of what drives individual differences in behavioral phenotypes by
ignoring the variability of behavior around an individual’s mean. In particular, enhanced white matter (WM) struc-
tural microstructure has been hypothesized to support consistent behavioral performance by decreasing Gaussian
noise in signal transfer. Conversely, lower indices of WM microstructure are associated with greater within-subject
variance in the ability to deploy performance-related resources, especially in clinical populations. We tested a mech-
anistic account of the “neural noise” hypothesis in a large adult lifespan cohort (Cambridge Centre for Ageing and
Neuroscience) with over 2500 adults (ages 18-102; 1508 female; 1173 male; 2681 behavioral sessions; 708 MRI scans)
using WM fractional anisotropy to predict mean levels and variability in reaction time performance on a simple be-
havioral task using a dynamic structural equation model. By modeling robust and reliable individual differences in
within-person variability, we found support for a neural noise hypothesis (Kail, 1997), with lower fractional anisot-
ropy predicted individual differences in separable components of behavioral performance estimated using dynamic
structural equation model, including slower mean responses and increased variability. These effects remained when
including age, suggesting consistent effects of WM microstructure across the adult lifespan unique from concurrent
effects of aging. Crucially, we show that variability can be reliably separated from mean performance using
advanced modeling tools, enabling tests of distinct hypotheses for each component of performance.
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Significance Statement

Human cognitive performance is defined not just by the long-run average, but trial-to-trial variability around that average.
However, investigations of cognitive abilities and changes during aging have largely ignored this variability component of
behavior. We provide evidence that white matter (WM) microstructure predicts individual differences in mean performance
and variability in a sample spanning the adult lifespan (18-102). Unlike prior studies of cognitive performance and variability,
we modeled variability directly and distinct from mean performance using a dynamic structural equation model, which allows
us to decouple variability from mean performance and other complex features of performance (e.g., autoregression). The
effects of WM were robust above the effect of age, highlighting the role of WM in promoting fast and consistent performance.

Introduction
Prominent theories of cognitive aging posit a central role
for reductions in mental processing speed during later life
(Salthouse, 1996). These theories focus primarily on decreases
in mean performance (i.e., slowing-down) but mostly ignore
variability in processing speed, despite a long acknowledg-
ment that variability around the mean provides unique infor-
mation (Woodrow, 1932; Fiske and Rice, 1955; Nesselroade,
1991). Prior work shows that average reaction time (RT) dis-
plays steep improvement early in life, followed by gradual
slowing into aging (Li et al., 2004). Complementary work
shows a similar pattern for behavioral variability (Williams et
al., 2005). Crucially, despite these similar patterns, evidence
strongly suggests that variability provides unique insight into
cognitive aging above and beyond mean performance alone
(Eizenman et al., 1997; Dykiert et al., 2012; Gamaldo et al.,
2012). For instance, trial-to-trial variability might reflect dif-
ferent strategies, momentary lapses (Adam et al., 2015), or
endogenous differences in the signal-to-noise ratio of neural-
evoked responses.

The neural noise hypothesis (Kail, 1997) posits that the sig-
nal-to-noise ratio of the CNS degrades during aging, leading to
deficits in processing speed. Electrophysiological recordings have
shown that increased neural noise (i.e., desynchronized neural
oscillations) led to slower behavioral performance in older adults
(Voytek et al., 2015; Dave et al., 2018) because of disrupted long-
range communication and synchronization between neural
regions (Voytek and Knight, 2015). Reduced inter-region com-
munication suggests a causal role for demyelination of neuronal
axons carrying signals between cortical regions (Peters, 2009).
While the mechanisms of progressive demyelination leading to
slowing of RT are debated (Peters, 2009; Bartzokis et al., 2010),
this relationship is robust in normative samples (Turken et al.,
2008; Fjell et al., 2011; Tamnes et al., 2012; Bennett and Madden,
2014). Additionally, in clinical samples with specific focal dam-
age to white matter (WM) (e.g., multiple sclerosis), increased
WM damage is associated with increased behavioral variability
(Britton et al., 1991; Bunce et al., 2007). While prior findings
have focused primarily on mean processing speed (but see Li
and Lindenberger, 1999), this logic extends naturally to vari-
ability (MacDonald et al., 2006; Halliday et al., 2019; Sorg et al.,
2021). Impaired WM is more prone to random leakage from
axonal signals that lead to inconsistencies in behavioral per-
formance. As such, we hypothesize that reduced WM measures
should predict slower overall performance and increased trial-
to-trial variability.

A key limitation in prior work on variability is the wide-
spread use of measures, such as the SD of response times (iSD)
or coefficient of variation (iCV; equal to the iSD divided by the
mean) across trials (e.g., Haynes et al., 2017). Unfortunately,

these simple estimates of variability fail to account for complex
features of behavioral performance (e.g., trends or autoregres-
sion), leading to systematic overestimates or underestimates of
variability (Wang and Grimm, 2012). To address these chal-
lenges, we used dynamic structural equation modeling (DSEM)
(Asparouhov et al., 2018), which combines strengths of time-se-
ries analysis with hierarchical random effects in a structural
equation framework. This approach allows us to test trial-to-
trial predictors of RT data at the within-person level, and
explain person-to-person differences in mean RT and variability
simultaneously (McNeish and Hamaker, 2020). Using this innova-
tive framework for capturing variability deconfounds sources
of variance that might otherwise bias individual differences
performance features, and allows us to test different causal
mechanisms associated with individual differences in mean and
variability in RT.

We tested this neural noise hypothesis in a large cohort of
adults (age 18-102) (Shafto et al., 2014) who completed a set of
RT tasks (N=2681) and underwent a diffusion-weighted scan
(N= 708). We modeled individual differences in four aspects of
behavioral performance: mean RT, variability, trends across the
task, and the autoregressive effect between adjacent trials. We
incorporated differences in WM and age to examine how they
predicted each component of processing speed performance. We
hypothesized that reduced WM microstructure would predict
increased mean RT and heightened variability (i.e., slower, less
consistent performance), and that these effects would be robust
to including age in the model. In doing so, we pursued dual
goals: (1) to conduct a theoretical test of the neural noise hypoth-
esis and (2) to use that test to outline a generative DSEM frame-
work for testing hypotheses related to variability for future work
in this area.

Materials and Methods
For consistency and precision, portions of the text in this section are
drawn from prior work describing the Cambridge Center for Ageing
and Neuroscience (Cam-CAN) dataset (Shafto et al., 2014; Taylor et al.,
2017).

Participants
Data were provided by healthy adult participants in two phases of data
collection. Stage I consisted of at-home interviews of individuals living
in the Cambridge City, UK region. During Stage II, a subset of these par-
ticipants was invited to complete a neuroimaging session, where struc-
tural and functional scans were obtained. Participants at Stage II were
recruited in deciles between 18 and 87 years of age, with a goal of equal
sample sizes (;100) at each decile. In the current analyses, we used be-
havioral data (“simple” response time [SRT]) from 2681 healthy adults
(1508 female; 1173 male) from Stage I and additional behavioral data
(visual short-term memory [VSTM]) and measures of structural WM
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from 708 adults (359 female; 349 male) from Stage II. A subset of these
data has been analyzed previously (Kievit et al., 2016) using more sim-
plistic methods. Exclusion criteria included MR safety contraindications
(e.g., pacemakers), learning disability (living at home), cognitive impair-
ment (Mini-Mental State Examination score of �24) (Folstein et al.,
1975), and reduced response from individuals with limited longstanding
illness or disability (for full information on exclusion criteria, see Shafto
et al., 2014, their Table 1). Before the interview, individuals gave written
informed consent for the study and record linkage. Individuals who lack
the capacity to give consent were not included. Written informed con-
sent was also given by participants at each session for Stages II and III
(Shafto et al., 2014).

Experimental design
Behavioral tasks
The description of the behavioral tasks is copied, in part, from Shafto et
al. (2014). For additional information regarding the tasks and requests
for data access, see the Cam-CAN dataset inventory (https://camcan-
archive.mrc-cbu.cam.ac.uk/dataaccess/).

SRT task. An SRT task was used to assess basic aspects of speeded
responses. In the SRT, participants viewed an image of a hand with blank
circles above each finger, while resting their right hand on a response
box with four buttons, one for each finger. When a given circle turned
black on the image, the participants were instructed to press with the rel-
evant finger as quickly as possible. On pressing the button (or after a
maximum of 3 s), the circle became blank again and the variable inter-
trial interval began. The intertrial interval was varied pseudo-randomly
with a positively skewed distribution (mean=3.7 s, median= 3.9 s,
range = 1.8-6.8 s). The SRT consisted of 50 trials, and the principal out-
come measure was RT from stimulus onset to button press. For a visual-
ization of the task, see Kievit et al. (2016, their Fig. 2a).

Visual short term memory task. This task assesses the processes
underpinning VSTM. In the VSTM, participants viewed a series of circu-
lar disks presented briefly on a computer screen. After a brief delay, par-
ticipants reported the color of a cued disk, by selecting from a color
wheel that displays a rainbow of hues. On each trial, participants saw a
display for 250 ms which contains a central fixation and one to four col-
ored disks, with the colors chosen at random. The locations of the disks
on the screen were randomly selected from eight points equidistant from
a central fixation. Following the brief encoding display, there was a 900
ms blank screen, and then one of the disk locations was highlighted with
a border and the response color wheel appeared. On half of trials, any
uncued disks also reappeared, to provide the context within which the
disk was encoded. Participants indicated their confidence in the selected
color by the length of time they held down their finger: as they held their
finger down for longer, white CIs spread out around the selected point
indicating more uncertainty about their selection. The response interval
did not have a time limit: after participants confirmed their response,
there was an 830 ms fixation period before the next trial began. After a
brief practice period, participants completed two blocks of 112 trials,
with set-size and probe context being counterbalanced and randomly
intermixed within each. Participants also completed a perceptual control
block of 56 trials, where single disks were presented at fixation along
with the color wheel, until the participant matched their hue by selecting
the appropriate point on the surrounding wheel. There were two possi-
ble responses to model with the VSTM data: a first response and a final
response. In general, we discuss results related to the final response, but
full results from both models are available (https://osf.io/nkjdt/). We
note major differences if relevant.

WMmicrostructure
WMmicrostructure was assessed using the fractional anisotropy (FA) of
WM tracts derived from diffusion weighted imaging; see prior work for
full details on the relevant scan parameters (Taylor et al., 2017) and proc-
essing pipeline (Kievit et al., 2016). We used FA given its widespread use
in investigations of aging and WM; however, it should be noted that FA
is a complex measure and its exact relation to WM health is not fully
understood (Jones et al., 2013). Furthermore, its relatively simple model

structure may not capture especially complex features of WM organiza-
tion (e.g., crossing fiber bundles). Consistent with prior work, mean FA
was computed for the 10 tracts defined by the Johns Hopkins University
WM tractography atlas (Hua et al., 2008; for tract visualization, see
Kievit et al., 2016): the anterior thalamic radiations (ATRs), corticospinal
tract, dorsal cingulate gyrus, ventral cingulate gyrus (CINGHipp), for-
ceps major, forceps minor, inferior fronto-occipital fasciculus, inferior
longitudinal fasciculus, superior longitudinal fasciculus, and uncinate
fasciculus. As a sensitivity analysis, FA values .4 SDs from the mean in
each tract (0.27% of values) were excluded for the core set of analyses.
Model results were not substantively impacted, and so all values were
retained in the presented results.

We faced a challenge when using the different WM tracts as predic-
tors in the DSEM (detailed below) because of the high correlations
across measures (54% of the total variance explained by the first princi-
pal component). We considered several options, but each came with lim-
itations: (1) principal component analysis-derived scores did not allow
for missing data; (2) WM tracts do not theoretically conform to a reflec-
tive latent variable structure; and (3) including all tracts as simultaneous
predictors resulted in unstable results because of the high multicollinear-
ity (Lavery et al., 2019). Furthermore, prior work (de Mooij et al., 2018)
showed that, while WM tracts are correlated, they do not show a unidi-
mensional or simple factor structure (i.e., predominant loading onto a
single factor, negative factor loadings, etc.). As such, we fit models for
each tract separately and looked across models for consistent findings.
We thereby present a single tract (the ATR) as a canonical example,
while noting any deviation from the canonical pattern of effects if
needed. We do not attempt to draw specific theoretical inferences for
individual tracts, but rather take them as repeated instances of a WM
general effect. Consistent effects across tracts would indicate that the
effects are generally related to WM FA, while inconsistent effects might
suggest functional specificity, which we do not expect.

Statistical analysis
DSEM
All models were fit using the DSEM module in Mplus version 8 for in-
tensive longitudinal data (Asparouhov et al., 2018). DSEM is a flexible
modeling framework, which combines strengths of traditional time-se-
ries analyses, multilevel models, and structural equation models (for a
primer on DSEM, see McNeish and Hamaker, 2020). DSEM also allows
for the simultaneous estimation of the random effects of behavioral per-
formance and their association with covariates of interest, rather than a
2 step approach that does not propagate the uncertainty in estimates
across levels of analysis (Wang and Grimm, 2012). At the within-person
trial level, we modeled the natural log of RT (logRT) for both SRT and
VSTM behavior on a given trial as a function of RT at the prior trial (w )
and the trial number (b t). Phi (w ) represents the autoregressive effect,
or inertia of performance between adjacent trials. Individuals with high
autoregressive effects would show slower cycles of faster and slower per-
formance around their mean, while smaller autoregressive effects would
reflect larger differences in performance between adjacent trials (com-
pare the gray and pink exemplar time-series in Fig. 1B). The trend (bt)
parameter reflects overall gains or losses in performance across the task
session (here the trend across trials, but this could reflect other metrics
of time; McCormick, 2021) (compare the gray and blue exemplar time-
series in Fig. 1B). At the person level, we modeled random effects for w
and the trend (bt), as well as for the mean (m) and variance (c ) of RT
across the task. By default, the between-person c parameter was esti-
mated with a log-linear model to aid in estimation (McNeish and
Hamaker, 2020). For each task, we compared a fixed-effects model to
one where each of these parameters was allowed to vary freely. To assess
the robustness of the results and compare models, we took several steps
to evaluate the results. Model convergence was achieved when the poten-
tial scale reduction (PSR) metric, which estimates the potential reduction
in the width of the posterior parameter distribution with infinite subse-
quent draws, was ,1.10 (Gelman and Rubin, 1992), reflecting ,10%
potential narrowing compared the current distribution. Trace plots asso-
ciated with the estimated parameter were examined visually to ensure
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that chains converged to a random scatter around a fixed mean (i.e., flat
traces). To ensure model robustness, we compared a solution with
10,000 iterations to one with 20,000 iterations using the same random
seed. Parameter changes between models were assessed with a measure
of relative bias (i.e., the difference between the two parameter solu-
tions divided by the original parameter). We then estimated the
same model with 20,000 iterations twice more, with different ran-
dom seeds to assess the impact of starting values on the final solu-
tion. If bias was low (,5%) across solutions, we retained the model;
otherwise, we doubled the iterations for all solutions and assessed
relative bias on the new models. All models presented here con-
verged to acceptable values (for all model diagnostics and compari-
sons, see the analysis code; https://osf.io/nkjdt/). To correct for the
multiple models, we applied false discovery rate correction to the
significance tests. Because the standard Mplus output only gives
floating point precision to the third decimal place, we calculated the
adjusted p values from the estimate and posterior SE.

We then built a series of conditional models predicting the random
effects by including the WM tract FA (with the ATR as the canonical
example) and age separately before including both in a final conditional
model. The unconditional model can be expressed in the multilevel
equation below, for person i at trial t:

Level 1:

log RTt;ið Þ ¼ mi þ wiRTt�1;i þ b tiTrialt;1 þ « t;i

« t;i ;N 0; c ið Þ
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mi ¼ g 00 1 u0i

wi ¼ g 10 1 u1i

bti ¼ g 20 1 u2i

c i ¼ exp v 0 1 u3ið Þ
(1)
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With covariates entering the model at Level 2 for the conditional
model as follows:

Level 2:

mi ¼ g 00 1 g 01WMi 1 g 02Agei 1 u0i

w i ¼ g 10 1 g 11WMi 1 g 12Agei 1 u1i

b ti ¼ g 20 1 g 21WMi 1 g 22Agei 1 u2i

c i ¼ exp ðv 0 1v 1WMi 1w2Agei 1 u3iÞ
(2)
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In the conditional model, the elements in ui are residual (co)varian-
ces. We can also represent this model graphically (Fig. 1A), where we
can see that our four random effects reflect between-person differences
in the within-person effects. For illustration purposes, we simulated
exemplar time-series highlighting how high levels of a given random
effect would change performance output (Fig. 1B).

The inclusion of age served as an important covariate to ensure that
our results were not driven solely by systematic differences across age in
mean RT (r= 0.242) and co-occurring age and WM FA (r = �0.470)
across the lifespan. Because only a subset of participants who contrib-
uted data at Stage I (SRT) were invited to Stage II (VSTM and WM
measures), we used a joint likelihood approach instead of the default
conditional likelihood to allow missingness on exogenous variables with-
out listwise deletion by estimating the mean and variance of each predic-
tor (i.e., age and WM tract FA). The raw data are available on signing a
data sharing request form (for more detail, see https://www.mrc-cbu.
cam.ac.uk/datasets/camcan/). Analysis code and full model results are
available on OSF (https://osf.io/nkjdt/).

Results
Unconditional model
We began by fitting two unconditional models to the SRT
data: one with only fixed (i.e., zero variance) effects and the
other with four random effects. The deviance information
criteria (DICfixed = 1793, DICrandom = �44,107, DDIC =
�45,900) overwhelmingly favored the inclusion of the four
random effects (Asparouhov et al., 2018; McNeish and
Hamaker, 2020). Fixed effects-only models in the VSTM
data also showed very poor fit, bolstering the rationale for
adopting a random effects approach to capture individual

Figure 1. A, Model schematic. We estimated four random effects (m, c , b t, and w ) at the between-person level from the within-person model (dashed lines) of RT (RTt) regressed on its
prior value (RTt-1) and the current trial number (Trialt). Observed variables are depicted in boxes and latent variables in circles, as is conventional. The random effects were regressed (solid sin-
gle-headed arrows) on the covariates, Age and WM FA (tracts were modeled individually so the identity of this covariate varied over models). Finally, the covariance between Age and FA (solid
double-headed arrow, left) and residual covariances between the random effects (solid double-headed arrows, right) were estimated. B, Exemplar time-series. We simulated exemplar time-se-
ries to highlight the impact of higher values on each of the four random effects. The exemplars differed from the reference time-series (gray) in mean (red; Highm), variance (green; High c ),
trend (blue; High bt), and autoregressive (purple; High w ) parameters.
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variability in the different components of the RT data. In a fol-
low-up analyses, we compared the full random effect model to a
set of models where we constrained each random effect to zero
in turn. Model comparisons provided strong evidence in favor of
including all random effects (DDICs ranging from �193 to
�20,222). In other words, the model fit results suggested that the
complexity of the behavioral data could not be appropriately cap-
tured by a single effect that held for all members of the sample
and rather than allowing for individual differences in all four
components of performance was necessary. For the SRT data, a
model with four random effects showed that there is significant
person-to-person variability in all four of the parameters mod-
eled (Table 1). Examining the average within-person standar-
dized effects (Schuurman et al., 2016), there was small positive
inertia in participants’ response time across adjacent trials (RTt-1;
b = 0.036, SDposterior = 0.003, 95% CI = [0.030, 0.042]) and par-
ticipants got faster on average across the task (Trialt; b =
�0.062, SDposterior = 0.003, 95% CI = [�0.067, �0.056]). Results
for the VSTM data confirmed this same general pattern.

When examining the pattern of correlations, there was some
heterogeneity between the tasks. In the SRT data, the mean (m),
variability (c ), and autoregressive (w ) random effects were all
positively correlated with one another, and all negatively corre-
lated with the trend effect (b t; Fig. 2). Of particular note was the
correlation between mean RT and response variability which was
moderately positive (r= 0.397, 95% CI = [0.359, 0.434]), suggest-
ing that we could achieve separation of individuals’ mean and
variability in performance (compared with r=0.666 between
mean RT and a simple iSD measure). Interestingly, mean RT in
the VSTM data showed a different pattern of relations (final

response: r = �0.398, 95% CI = [�0.465, �0.328]), being nega-
tively correlated with the other random effects. This perhaps
indicates more of a ceiling effect, rather than the floor effect seen
in simple speeded response tasks.

Model based and observed measures of variability
To further clarify the relationship between the DSEM-derived
components of behavioral performance and traditional measures
calculated directly from the data (iSD and iCV), we calculated
these observed measures on the trial-level RT values after taking
the natural log and entered the factor score estimates of the ran-
dom effects as predictors in a multiple regression analysis (Fig.
3). The iSD measure was significantly predicted by all four ran-
dom effects, while the iCV measure was significantly predicted by
the mean, variability, and trend but not inertia factor scores.
Interestingly, while variability strongly related to iSD (b = 0.885,
SE=0.007, p, 0.001), it weakly and negatively related to iCV
(b =�0.167, SE=0.021, p, 0.001). Indeed, iCV was most
strongly related to mean performance (b = �0.293, SE=0.027,
p, 0.001) and the variance explained in iCV was relatively low
(R2 = 0.111), especially compared with the high variance explained
by the four random effects in iSD (R2 = 0.894). However, both
analyses suggest that these observed metrics of intraindividual
variability are significantly contaminated by the more complex
components of performance, highlighting the utility of the DSEM
approach.

Conditional model without age
We next included the 10 WM tracts as predictors in separate
models at the between-person level predicting the random

Table 1. Model results for unconditional and full conditional modela

Unconditional model Full conditional model

Estimate SDpost Lower Upper Estimate SDpost Lower Upper

Within-person standardized effects
g 10 0.036 0.003 0.030 0.079 0.043 0.003 0.036 0.049
g 20 �0.053 0.003 �0.059 �0.047 �0.055 0.005 �0.063 �0.044

Between-person unstandardized effects
g 00 �0.908 0.006 �0.920 �0.896 �0.495 0.253 �0.996 �0.008
g 10 0.036 0.004 0.029 0.043 0.196 0.128 �0.059 0.446
g 20 �0.001 0.000 �0.002 �0.001 �0.007 0.016 �0.041 0.022
v 0 �3.292 0.014 �3.309 �3.254 �1.689 0.594 �2.880 �0.536
tm 0.083 0.003 0.078 0.089 0.066 0.002 0.062 0.071
t w 0.008 0.001 0.006 0.010 0.013 0.001 0.011 0.015
t b t

1.9e-5 5.1e-7 1.8e-5 2.0e-5 1.7e-5 6.4e-7 1.5e-5 1.8e-5
t c 0.424 0.014 0.398 0.452 0.356 0.013 0.330 0.382

Between-person standardized covariate effects
ATR FA

g 01 �0.149 0.049 �0.244 �0.051
g 11 �0.085 0.063 �0.209 0.040
g 21 0.042 0.074 �0.096 0.194
v 1 �0.197 0.051 �0.296 �0.095

Age
g 02 0.351 0.032 0.287 0.413
g 12 0.012 0.047 �0.082 0.105
g 22 �0.072 0.045 �0.157 0.020
v 2 0.272 0.034 0.204 0.337

Variance explained (R2)
log(RTt-1) 0.096 0.001 0.094 0.099 0.163 0.003 0.158 0.168
mi 0.201 0.018 0.167 0.238
w i 0.010 0.010 0.001 0.038
b ti 0.013 0.020 0.003 0.041
c i 0.169 0.020 0.133 0.212

aEstimate, Sample-recovered parameter; SDpost, posterior SD; Lower, Upper, boundaries of the credible intervals.
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effects. As mentioned previously, we focus here on the model
with the ATR but note any differences between models with
other tracts (all models for the other tracts are available at
https://osf.io/nkjdt/). As hypothesized, reducedWMFA predicted

both slower response times (b = �0.322, SDposterior = 0.042,
95% CI = [�0.401,�0.237]) and increased response variability
(b = �0.344, SDposterior = 0.042, 95% CI = [�0.423,
�0.260]). Furthermore, lower WM FA predicted a higher

Figure 3. Explaining observed metrics of interindividual variability in SRT. While iSD was well described by the linear combination of the four random effects, the iCV showed surprising neg-
ative relationships with the metrics of mean and variability in performance derived from the DSEM. However, both metrics showed significant contamination by more than one random effect,
especially mean performance (m) and the trend (bt).

Figure 2. Distributions of random effects from the simple RT task. Each of the four random effects showed significant between-person variability. Mean performance (m), variability (c ),
and inertia (w ; i.e., the autoregressive effect) were all positively correlated, and negatively correlated with the trend of performance across the task (b t).
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autoregressive effect (b = �0.123, SDposterior = 0.053, 95%
CI = [�0.229, �0.021]) and a less positive trend (b = 0.119,
SDposterior = 0.034, 95% CI = [0.053, 0.186]). The addition of the
ATR covariate reduced the residual correlation between mean
RT and response variability (r = 0.263, 95% CI = [0.268,
0.371]). The other tracts had similar effects (although the
effects for the CINGHipp were not significant) in the SRT
data (Fig. 4). In the VSTM data, reduced ATR FA predicted
only slower mean RT (b = �0.919, SDposterior = 0.344, 95% CI =
[�1.581, �0.239]) but not response variability (b = �0.653,
SDposterior = 0.787, 95% CI = [�2.198, 0.878].

Conditional model with age
Finally, we included age as an additional covariate predicting the
random effects to account for the likely confounding of system-
atic WM FA variation decreases across the adult lifespan (Fig. 1).
Results suggested that older individuals showed slower average
RT (b = 0.351, SDposterior = 0.032, 95% CI = 0.287, 0.413]) and
greater response variability (b = 0.272, SDposterior = 0.034, 95%
CI = 0.204, 0.337]; Table 1; see Fig. 5). Although somewhat atte-
nuated compared with the conditional model without age, lower
WM FA continued to uniquely predict slower mean perform-
ance (b = �0.149, SDposterior = 0.049, 95% CI = [�0.244,
�0.051]) and increased behavioral variability (b = �0.197,
SDposterior = 0.051, 95% CI = [�0.296, �0.095]). The inclusion of
age and WM FA together explained 17%-20% of the between-
person variance in mean RT (R2 = 0.201, SDposterior = 0.018, 95%
CI = [0.167, 0.238]) and RT variability (R2 = 0.169, SDposterior =
0.020, 95% CI = [0.133, 0.212]), but only 1% of the variance in
the trend across trials (R2 = 0.012, SDposterior = 0.013, 95% CI =
[0.003, 0.041]) and the variance in the autoregressive effect (R2 =
0.010, SDposterior = 0.010, 95% CI = [0.001, 0.038]). At the within-
person level, the lag-1 (i.e., autoregression) and trial (i.e., trend)
effects accounted for 16% of the variance in individual trial RT
(R2 = 0.163, SDposterior = 0.003, 95% CI = [0.158, 0.168]).

Discussion
In the modeling of human behavior, analysis of mean perform-
ance has preoccupied the majority of research focus. Here, we

offer compelling evidence that variability in performance holds
unique additional value for a broader understanding of human
behavior. Crucially, to accurately isolate the mechanisms and con-
sequences of this parameter as distinct from the mean requires
appropriate quantitative tools. Using a DSEM (Asparouhov et al.,
2018) approach, we fit a model that separates out four distinct
components of human RT behavior: mean performance, variability
in response times, linear trends across the task, and inertia (i.e.,
autoregression) in performance from trial to trial. In a large life-
span cohort (Shafto et al., 2014), we then used this model to exam-
ine the associations between these components of performance
across aging and individual differences in WM microstructure
(Fig. 4). Following from a “neural noise” hypothesis (Kail, 1997;
Peters, 2009; Voytek et al., 2015), we posited that reduced WM
microstructure would predict greater variability in behavioral per-
formance, reflecting a less consistent signal-to-noise ratio in the
propagation of speeded responses in the task (Peters, 2009; Kievit
et al., 2016; Dave et al., 2018). We found evidence that poorer
WM microstructure, measured through FA, predicted increased
variability, as well as decreased mean level performance (Fig. 2),
and these relationships held when controlling for age (Fig. 5).
Overall, these results highlight the promise of approaches that
directly incorporate variability as a parameter in the model, with
potentially unique etiologic mechanisms and consequences.

Modeling complex human behavior
One of the primary benefits of adopting a DSEM framework
here is the ability to directly model within- and between-person
features that are often treated as noise in simpler analyses (e.g.,
variability and trend), as well as complex temporal features of
performance (e.g., autoregression) that would be invisible to
those models. Doing so not only allows us to deconfound meas-
ures of mean performance and variability (de Haan-Rietdijk et
al., 2016), but to model individual differences in all four compo-
nents of performance that can show unique patterns of relation-
ship with other individual differences measures. In each of the
three tasks, model comparisons overwhelmingly favored models
with random effects of the four components over a model with
fixed effects, suggesting that human behavioral performance cannot

Figure 4. WMmicrostructure and variability. Across 9 of the 10 canonical tracts, reduced WM FA predicted more variability in response times (in the CINGHipp tract, there was no significant relationship).
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be captured adequately by models that do not incorporate
individual differences. Even in RT data, which often have a
strong correlation between mean performance and variabili-
ty because of floor effects on RT, DSEM was able to model
individual differences in these components with reasonably
low correlation (r = 0.397).

The DSEM approach to modeling variability also allowed us
to explore the relationships between the random effects of the
four behavioral components and observed measures of interindi-
vidual variability calculated directly from the trial-level data. We
showed that the iSD measure was strongly related to variabil-
ity (c ) from the DSEM, but with significant contributions
from the other random effects, while iCV was most strongly
related to the mean performance factor (m) and negatively
related to both the mean and variability factors (Fig. 3).
Together, these results highlight the strength of the DSEM to
separate out these confounded factors of performance into
unique factors and cautions us against using simple observed
measures of variability without taking steps to ensure that
they are not confounded by other sources of individual differ-
ences (e.g., differential trends or autoregression).

The DSEM framework presented here has the potential for
many additional expansions that can help to broaden our under-
standing of the role that variability plays in a wide range of phe-
nomena. Two such extensions include showing that individual

differences in variability have unique consequences by including
distal outcomes from longitudinal data into this model. Another
exciting extension would be to incorporate the between-person
level of the DSEM into a standard growth model (Hancock et al.,
2001) to map trajectories of individual differences in mean per-
formance and variability. This type of approach could help to
disentangle within- from between-person differences in vari-
ability that we found across age in the current investigation.
The flexibility of DSEM to incorporate these, and other, com-
plex effects makes it a powerful tool for understanding the
interplay between individual differences in mean performance
and variability across the lifespan.

Testing a neural noise hypothesis
Neural noise has been hypothesized to play a role in age-related
changes in motor (Sosnoff and Newell, 2011; Voytek et al.,
2015), sensory (Tran et al., 2020), and cognitive (Voytek et al.,
2015; Pertermann et al., 2019) abilities. Neural noise has also
been proposed as a mechanism in various non-normative states,
such as ADHD (Hearne et al., 2021) and dyslexia (Frey et al.,
2019). Common between these different theories is the idea that
noisy firing in neural networks impairs consistent and efficacious
behavior. Kail (1997) proposed that WM impairment offered a
potential structural mechanism for increase in neural noise across
aging, which we tested in the current study. WM has also been

Figure 5. Conditional model of simple RT task with age and WM microstructure. Age and WM FA had opposite predictive effects, with older individuals showing slower and more variable
responding, while those with greater WM FA showed the opposite pattern (i.e., faster, more consistent responding). Solid black paths represent significant regression effects (single-headed,
directed paths; e.g., the effect of Trialt on RTt) and covariances (double-headed, undirected paths; e.g.,m with c ). Grey, short-dashed paths represent non-significant effects (e.g., the effect of
ATR FA on w ). Black, long-dashed paths link random effects at the between-person level with their corresponding effect at the within person level. Explained variance (i.e., R2) is represented
by the proportion of the outcome variable shaded in gray.
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shown to be important for predicting response time variability
associated with attentional problems in adolescence, providing
additional evidence that this is a theoretically plausible target for
investigation (Wiker et al., 2022).

We used the DSEM to test our hypothesis that reduced WM
microstructure would predict less consistent behavioral perform-
ance. To do so, we entered each of the 10 WM tracts (Hua et al.,
2008; Kievit et al., 2016) in separate models as a predictor of each
of the four components of behavior. Prior work had shown con-
sistent evidence that enhanced WM measures related to faster
overall performance (Turken et al., 2008; Fjell et al., 2011) and
observed measures of variability (Tamnes et al., 2012). Here, we
confirm these prior findings, showing that WM FA predicts both
slower mean RT performance and heightened variability in RT.
These results held across the different WM tracts, with the excep-
tion of the CINGHipp, which showed a nonsignificant effect.
WM FA did not predict individual differences in the trend or
autoregressive effects, although we have much less power to
detect effects in the autoregressive parameter as it depends on
complex temporal information. While further work remains
to incorporate direct measures of neural oscillations into this
model, this provides consistent evidence with prior electro-
physiological data where greater neural noise is related to
poorer performance (Voytek et al., 2015; Dave et al., 2018;
Tran et al., 2020), increases during aging (Voytek and Knight,
2015; Nobukawa et al., 2019), and is correlated with WM mor-
phology (Smit et al., 2012; van Straaten et al., 2015).

To establish the specificity of these relationships, we intro-
duced age into the model as an additional predictor to control
for the systematic differences in WM FA and associated changes
in speeded responses across the adult lifespan (Bartzokis et al.,
2010). In this full conditional model, we show that the relation-
ships between WM and the mean and variability factors are pre-
served, although somewhat attenuated. Consistent with prior
work, increased age and reduced WM FA were associated with
poorer (i.e., slower and more variable) performance (Fig. 5). In
sum, these results provide additional support for the neural noise
hypothesis (Kail, 1997), reflecting a role for WM in the signal
propagation needed for consistent performance and perform-
ance deficits when these fibers are compromised.

Directions for future research
While there are many strengths to the current approach taken
here, there are several avenues for further testing of the neural
noise hypothesis that should be addressed in future research.
First, longitudinal measures of WM tract and behavioral change
over time would allow us to assess within-person dynamic rela-
tionships across aging. Additionally, while we tested the rela-
tionship between structure and behavioral output variability, an
important follow-up test of the neural noise hypothesis would
be to link structural brain changes during aging to evoked neu-
ral responses during behavior. Combining functional record-
ings, either fMRI (Garrett et al., 2021) or electrophysiological
(McIntosh et al., 2008; Woolnough et al., 2022), with structural
measures (e.g., Hearne et al., 2021) would shed important light
onto the consequences of WM loss for function and behavior.
One strength of the DSEM approach would be to combine
time-series models for both recordings and behavior and link
them at the factor level to measurements of structural WM, or
to important cognitive outcomes across aging.

When studying the broader construct of variability, it is
important to note that the adaptive versus maladaptive na-
ture of variability is context-dependent. In the current work,

variability of speeded responses on a relatively simple RT
appears to reflect performance deficits. However, in other
contexts, such as learning (McCormick and Telzer, 2017) or
more complex tasks (McIntosh et al., 2008; Garrett et al.,
2011), variability may allow for greater flexibility in represent-
ing the task space. Understanding when variability is related to
improvements versus declines in cognitive performance will
offer greater insights into the mechanistic processes underlying
lifespan brain development.

In conclusion, the study of variability as an important marker
of individual differences in behavior and cognition is still in the
early phases of development. We presented here a powerful
framework for modeling variability in concert with other compo-
nents of behavior, including mean performance, trends over
time, and inertia in trial-level performance. We further show
that these individual differences can be used to test a theory of
neural noise by including person-level predictors and found that
both reduced WM microstructure and increased age uniquely
predict poorer task performance, consistent with the importance
of intact WM tracts for appropriate signal propagation. The
results here highlight the promise of leveraging advanced behav-
ioral modeling to move beyond a sole focus on mean differences
and recognize variability as an important individual difference
marker for understanding human behavior. By combining these
models with measures of brain structure and function, this
framework can be used to test a wide array of hypotheses for
how these individual differences in variability emerge.
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