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Distinct components 
of cardiovascular health are linked 
with age‑related differences 
in cognitive abilities
Deborah L. O. King 1,2*, Richard N. Henson 3,4,5, Rogier Kievit 6, Noham Wolpe 3,8, 
Carol Brayne 7, Lorraine K. Tyler 2,5, James B. Rowe 1,4,5, Cam-CAN * & Kamen A. Tsvetanov 1,2,5

Cardiovascular ageing contributes to cognitive impairment. However, the unique and synergistic 
contributions of multiple cardiovascular factors to cognitive function remain unclear because they are 
often condensed into a single composite score or examined in isolation. We hypothesized that vascular 
risk factors, electrocardiographic features and blood pressure indices reveal multiple latent vascular 
factors, with independent contributions to cognition. In a population-based deep-phenotyping study 
(n = 708, age 18–88), path analysis revealed three latent vascular factors dissociating the autonomic 
nervous system response from two components of blood pressure. These three factors made unique 
and additive contributions to the variability in crystallized and fluid intelligence. The discrepancy in 
fluid relative to crystallized intelligence, indicative of cognitive decline, was associated with a latent 
vascular factor predominantly expressing pulse pressure. This suggests that higher pulse pressure is 
associated with cognitive decline from expected performance. The effect was stronger in older adults. 
Controlling pulse pressure may help to preserve cognition, particularly in older adults. Our findings 
highlight the need to better understand the multifactorial nature of vascular aging.

Life expectancy is increasing and the global population is ageing at an unprecedented rate. Identifying the factors 
that promote healthy cognitive ageing is therefore a public health priority1,2, recognised by the World Health 
Organisation’s global strategy for collaborative action on healthy ageing3. This includes identifying the risk and 
modifying factors for cognitive decline.

The second leading cause of cognitive decline in older people, after neurodegeneration, is vascular disease4, 
and vascular pathology is present in three-quarters of autopsies in older populations5. There may be a continuum 
between vascular pathology, dementia and Alzheimer’s Disease in the oldest old6. Vascular factors trigger a 
cascade of cellular and molecular damage that remodels cerebral vessels and tissue7–12. Vascular factors include 
total blood pressure13,14, pulse pressure15–17, heart rate variability9,18–23, and body-mass index24–27. Each factor 
may have different underlying causes and consequences for a spectrum of brain pathologies contributing to any 
degree of cognitive decline, ranging from subjective cognitive decline to dementia 28.

Ageing links vascular factors with cognitive decline, however the mechanisms underpinning this link are not 
well characterised. It is not established whether multiple vascular factors act synergistically through one shared 
biological pathway, or rather act independently with distinct—and possibly additive—effects on cognition. Vas-
cular factors are often condensed into summary scores29,30, or considered in isolation from one another (e.g.22). 
This approach hinders understanding of age-related changes in cognition, since different vascular factors may 
have different and interacting effects31–34. Furthermore, interactions of vascular factors with age, in predicting 
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cognition, could be non-linear, but only linear effects are normally tested (e.g.35). Recent research indicates 
multiple, independent vascular pathways that are relevant to brain health and cognitive ageing10,35,36. We propose 
that vascular ageing is better captured by multiple latent factors, and that these factors contribute differentially 
to age-related changes in cognitive abilities.

Fluid intelligence is a core cognitive ability, likely contributing to all cognitive tests37. It encompasses work-
ing memory and executive functions, and is most strongly indexed by tests of abstract problem-solving, such as 
the Cattell test33,38,39. Importantly, it declines rapidly with adult age40,41. It is often contrasted with crystallized 
intelligence, which represents acquired and general knowledge. In contrast to fluid intelligence, crystallized 
intelligence remains relatively stable throughout life38, with only a small decline in late life or in dementia39,40.

Though they are positively correlated across individuals42,43, the difference between crystallized and fluid 
intelligence—their “discrepancy”—has been suggested as a sensitive measure of decline arising from brain injury, 
neurodegeneration and ageing44–52. A large discrepancy score can indicate abnormal cognitive ageing47,53, likely 
reflecting disproportionate declines in fluid relative to crystallized intelligence. An advantage of using this dis-
crepancy score is that it can function as a surrogate measure of longitudinal change in fluid intelligence, esti-
mated from cross-sectional data. This is because individual differences in fluid intelligence are likely to reflect 
several age-invariant determinants (e.g. genetic, education) that have nothing to do with ageing. By adjusting 
fluid intelligence for crystallized intelligence, such individual differences are reduced, and hence the discrepancy 
score better approximates longitudinal decline. In other words, crystallized intelligence can be used to adjust 
an individual’s current fluid intelligence on the basis of their likely fluid intelligence when they were younger. 
However, it should be noted that this adjustment is based on several assumptions, namely that (1) measurement 
of fluid and crystallized intelligence is invariant to age, (2) the two are highly correlated in youth, and (3) crystal-
lized measures do not change with age. We revisit these assumptions in the Discussion. More importantly, little 
is known about what determines the degree of discrepancy in healthy ageing, and here we test whether vascular 
factors are important such contributors.

To investigate the relationship between multiple vascular measures and the cognitive ability discrepancy, we 
used data from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN; www.​cam-​can.​org), with 708 
adults, aged 18 to 8854. The vascular measures were body mass index (BMI), heart rate, heart rate variability 
(represented by both low and high frequencies of the electrocardiogram, ECG20), and blood pressure. BMI is 
associated with increased cardiovascular risk55 and with differences in cerebral structure56, while HR is associated 
with white matter health35,57. Heart rate variability is the interval between heart beats. It typically declines with age 
and is associated with decreased cerebral blood flow and changes to cerebral structure and function20,58. Instead 
of representing blood pressure through simple systolic and diastolic measures, better insight may be achieved 
by transforming it into its steady and pulsatile components59–66. Therefore, we report pulse pressure (difference 
between systolic and diastolic blood pressure) and total blood pressure (the sum of systolic and diastolic, to be 
orthogonal to pulse pressure). There is substantial evidence that pulse pressure plays an important role in brain 
and cognitive health11. The observed vascular variables were then modelled with exploratory factor analysis, 
with the expectation of three latent vascular factors based on previous work36. The observed cognitive measures 
were the four sub-scores on the Cattell test, believed to capture fluid intelligence, and the Spot-The-Word and 
Proverbs tests, believed to capture crystallized intelligence (see54 for details). A confirmatory factor analysis was 
used to define the two Latent Cognitive Factors (LCF) of fluid and crystallized intelligence. The subtraction of 
the participant loadings of the fluid LCF from those of the crystallized LCF produced the ability discrepancy 
score47. The relationships between the ability discrepancy, the three latent vascular factors and age, as well as 
their interactions, were then investigated with multiple linear regression. We examined interactions with sex and 
medication (binary regressors for each of a number of drugs relevant to cardiovascular and cognitive health)67–69. 
We adjusted for self-reported general health and for education level, which may capture other differences in fluid 
intelligence not represented by our measures of current crystallized intelligence70.

We predicted (i) that latent Vascular Factors associated with “good” cardiovascular health would decrease 
with age, while the cognitive ability discrepancy would increase with age; and (ii) that some latent Vascular 
Factors would associate with the ability discrepancy over and above age, and with a strength of association that 
changes with age, whereby ability discrepancy in older people would be more dependent on their latent vascular 
factors scores.

Methods
Participants.  Figure 1 illustrates the analytical strategy and the study design with the Cam-CAN cohort, 
n = 70854,71. The methods were carried out in accordance with guidelines approved by Cambridgeshire 2 (now 
East of England—Cambridge Central) Research Ethics Committee, who approved all experimental protocols. 
All participants gave full, informed, written consent. Participants were recruited from Cambridge City GPs, ran-
domly selected from this complete population sampling frame. The detailed recruitment pathway is outlined in 
Supplementary Fig. 1. For a full list of exclusion criteria, see Supplementary Table 1. In brief, those participating 
represented the healthier and more advantaged spectrum within the population at all ages54. Self-reported gen-
eral health was reported across four categories of: excellent, good, fair or poor. The diastolic and systolic blood 
pressure observations were excluded for one participant due to data entry errors. Education was reported across 
four categories of: none, GCSE or O-Level, A-Level, Degree (College or University). Medication status (binary 
on/off) was reported across four categories of drugs with cardiovascular relevance: [1] anti-hypertensives69, 
including angiotensin receptor blockers, angiotensin converting enzymes inhibitors, calcium channel blocking 
agents and thiazide diuretics; [2] beta blockers, including beta selective and non-selective beta blockers; [3] 
other diuretics, including loop and potassium sparing diuretics; [4] dyslipidemics drugs, including statins67–69.

http://www.cam-can.org
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Vascular factors.  Systolic and diastolic blood pressure, and heart rate, were measured using the A&D 
Medical Digital Blood Pressure Monitor (UA-774). Measurements were taken after at least 10 min of a partici-
pant being seated and repeated 3 times in succession. BMI was calculated using portable scales as weight (kg)/
height (m)2. Heart rate variability was based on the frequency-domain information of normal-to-normal beats 
and extracted from resting state electrocardiogram recordings while seated during a separate MEG scan. We 
separated low- and high-frequency components: high frequency heart rate variability (0.15–0.4 Hz) principally 
indexes parasympathetic vagal influences, while low frequency heart rate variability (0.05–0.15  Hz) indexes 
non-vagal and sympathetic nervous system influences20,72. These two branches of the autonomic nervous system 
exhibit different non-linear trajectories with age, and might relate differently to cognition73. Heart rate variabil-
ity data was processed using the PhysioNet Cardiovascular Signal Toolbox74,75 in MATLAB (Mathworks, MA). 
Following Tsvetanov et al.36, segments classified as atrial fibrillation were excluded and data for any participant 
with > 50% atrial fibrillation (n = 1) were excluded. The heart rate variability at low and high frequency, and BMI, 
were log-transformed to render them more Gaussian.

Behavioural tasks.  Crystallized intelligence was assessed through the Spot the Word and Proverb Com-
prehension tasks. In the Spot the Word test of vocabulary, participants were asked to point to the letter string 
in a pair that is a real word (albeit infrequent)76. In Proverb Comprehension, participants read and interpreted 
three English proverbs77. Fluid intelligence was assessed with the Cattell Culture Fair Test, Scale 2 Form A, in 
which participants completed non-verbal puzzles resulting in four summary scores based on series completion, 
classification, matrices and topology conditions78,79.

Statistical analyses.  Analyses were performed in R (version 4.0.2) and R-Studio80. For initial checks, 
the three observations of diastolic and systolic pressure were correlated with age, using the Pearson’s prod-
uct moment correlation coefficient. They were then used to calculate three sets of total blood pressure (sys-
tolic + diastolic) and pulse pressure (systolic−diastolic). The resulting scores, and the three observations of heart 
rate, were log transformed to conform more closely to Gaussian distributions. These three sets of blood pressure, 
pulse pressure and heart rate measures were then standardised (mean = 0, standard deviation = 1) and condensed 
into a single latent variable per domain, using confirmatory factor analysis (CFA) in the lavaan package81. Latent 

Figure 1.   Schematic representation of the data processing and analysis pipeline to investigate shared and 
unique relationships between vascular and cognitive factors in the Cam-CAN dataset (n = 708). BMI body mass 
index, BP total blood pressure (systolic + diastolic), dia diastolic, Cattell 1–4 sub-scores across the four Cattell 
tasks, CFA confirmatory factor analysis, Discrepancy, the ability discrepancy, defined as LCF2 (crystallized) 
minus LCF1 (fluid), ECG electrocardiogram, EFA exploratory factor analysis, HR heart rate, HRV HF heart rate 
variability at high frequency, HRV LF heart rate variability at low frequency, LCF latent cognitive factor, LVF 
latent vascular factor, PP pulse pressure (systolic − diastolic), sys systolic, STW spot the word.
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variables reduce error and estimation bias, while increasing precision82,83. Note that the confirmatory models 
were saturated, where three indicators loading onto one latent variable gave zero degrees of freedom. Missing 
data were imputed using Full Information Maximum Likelihood in cases where data were recorded for at least 
one of the three domain-specific observations; where data were missing entirely, participants were omitted auto-
matically (leaving n = 579 for blood pressure and pulse pressure; n = 580 for heart rate).

Next, we sought to identify the optimal number of factors among all vascular variables using Exploratory 
Factor Analyses (EFA). EFA is a common multivariate statistical method used to uncover the structure of a large 
set of variables84. Thus, EFA was used to identify the smallest number of latent vascular factors (latent vascular 
factors) that can parsimoniously explain the covariance observed among all vascular variables (blood pressure, 
n = 579; pulse pressure, n = 579; heart rate, n = 580; heart rate variability, at low and high frequencies, n = 604; 
BMI, n = 587). EFA was performed with the Psych package and imputing missing data (n = 668)85. Allowing two 
variables per latent factor is the upper boundary limit for model identification, meaning that one-, two- and 
three-factor solutions can be explored for six vascular variables in the current study. Note that a three-factor 
model with 6 variables will be fully saturated, not allowing estimation of the absolute fit indices. Therefore, model 
validity was based on model comparisons using the chi-squared statistic (p < 0.05), i.e. using comparative fit 
indices to determine the optimal number of latent vascular factors. Factor score estimates for each latent vascular 
factor were then extracted from the winning model for further regression analyses, below.

To explore the robustness of the winning EFA vascular model (and its loadings), we performed an additional 
structural equation model that included cognitive variables too (see Supplementary Section A). To addition-
ally investigate whether the EFA vascular model structure is influenced by age, we repeated the EFA and model 
comparisons on sub-groups of young (n = 158, 18–37 years), middle (n = 311, 38–67 years) and old (n = 199, 
68–88 years) participants (Table 1; Supplementary Section B).

Observed cognitive variables were standardised and condensed into two latent variables, using confirmatory 
factor analysis. The two-factor structure was based on the established dissociation between crystallized and 
fluid intelligence86. Scores on the Proverbs (n = 655) and Spot the Word tests (n = 705) loaded onto one latent 
cognitive factor (LCF1), representing crystallized intelligence. Scores on the Cattell tests (n = 660) loaded onto 
LCF2, representing fluid intelligence. Missing data were imputed using Full Information Maximum Likelihood 
in cases where data were recorded for at least one observed variable, producing LCFs for n = 678. The difference 
between LCF1 and LCF2 was calculated to give the ability discrepancy47. The calculation of the ability discrepancy 
was based on three assumptions, namely that (1) measurement of fluid and crystallized intelligence is invari-
ant to age, (2) the two are highly correlated in youth, and (3) crystallized measures do not change with age. We 
investigated these assumptions using moderated non-linear factor analysis, correlations and visualisations, in 
Supplementary Section C.

The latent vascular factors and ability discrepancy were standardised to allow interpretation in terms of stand-
ard deviations from the mean. Linear and quadratic age predictor terms were also standardised. The relationships 
between the latent vascular factors, ability discrepancy and age were examined in multiple linear regression, 
using complete case analysis (n = 655). The presence of outliers with undue influence, as identified with Cook’s 
criteria87, motivated the use of robust linear regression, implemented in the MASS package88. We performed a 
series of regression models from simple to complex, all including general health, sex and education as covariates 
of no interest, but dropping effects that did not improve overall model fit. Fit was investigated with the Akaike 
Information Criterion, Bayesian Information Criterion and Sum of Squares. Results were reported at p < 0.05. 
To guide the interpretation of significance of parameters in the larger models, model specific p-values after 
Bonferroni corrections are also reported.

Five models were used to test different hypotheses. For model syntax, see Supplementary Section D. The first 
model examined the relationship between the ability discrepancy and the three latent vascular factors, ignoring 
any shared dependence on age, to reveal which latent vascular factor(s) make unique contributions to the abil-
ity discrepancy. The Second model investigated whether any relationships between the ability discrepancy and 
latent vascular factors remained over and above a second-order polynomial expansion of age, and/or whether 
any effects of latent vascular factors depended on age. Note that, since the latent vascular factors were highly 
correlated with age, if effects of latent vascular factors from Model 1 are no longer significant in Model 2, then 
this could simply be because age shares variability with the latent vascular factors. General health was covaried 
in Models 1 and 2, and taken forwards into further models if it significantly predicted the ability discrepancy.

Models 1 and 2 were compared and if Model 2 was shown to better fit the data, then the age terms were 
taken forwards into further models. Model 3 investigated whether our findings could be explained by medica-
tion status. Model 4 accounted for the interacting effects of sex on Vascular factors with age9,89–91. Since model 
comparisons showed that medications did not improve overall fit in Model 3, medications were not specified in 
Model 4. Model 5 investigated whether latent vascular factors interact with each other in order to determine the 
ability discrepancy. Since model comparisons showed that the inclusion of Sex interaction terms did not improve 
overall fit in Model 4, these interactions were not perpetuated to Model 5.

We also investigated whether the relationships between latent vascular factors and the ability discrepancy 
score, as explored in regression models, were robust to the effects of age on observed vascular measures. The 
EFA on vascular health was repeated over sub-groups of young, middle and old participants, and the resulting 
latent vascular factors were input to regression Models 1–5 (Supplementary Section B).

Results
Participants.  Characteristics of the 708 participants in the Cam-CAN Phase 2 are outlined in Table 1. Rate of 
missing data varied between 0 and 18% (see Table 1). When the cohort (n = 708) was split into three age groups, 
the proportion of each on medications was: 0% of the younger (18–37 years); 12.6% of the middle (38–67 years) 
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and 51.6% of the older (68–88 years) group. Across the entire cohort, 6.5% of participants had no education 
beyond 15 years; 13.6% had GCSEs or O-levels (usually taken at 16 years old); 19.5% had A-levels (usually taken 
at 18 years old); and 60.2% had a degree (or equivalent higher education). Also, across the entire cohort, 29.1% 
of participants rated their general health as excellent; 55.6% as good; 13.4% as fair; and 1.6% as poor.

Vascular factors and age.  Diastolic and systolic blood pressure increased with age (Supplementary Fig. 6). 
Within each confirmatory factor analysis on the repeated measures of blood pressure, heart rate and pulse pres-
sure, there were positive associations between all observed and latent variables, with p < 0.001 for all factor load-
ings. The resulting latent variables for blood pressure, heart rate and pulse pressure showed significant positive 
associations with age (Supplementary Fig. 7). BMI also correlated significantly positively with age, while heart 
rate variability at both frequencies showed a significantly negative association (Supplementary Fig. 7).

Vascular factor analysis.  We used EFA to estimate models with one, two and three factors. The two-factor 
model did not converge well. The three-factor model was fully saturated (no residual degrees of freedom). Model 
comparisons showed two factors to fit better than one (∆ X2 = 236.57, p < 0.001), and three factors to fit better 

Table 1.   Demographic information by age-tertiles (n = 708). For the three observations of systolic, diastolic 
and heart rate, average values are reported. Measures presented here were averaged over the three observations. 
One decimal place is reported where data are continuous. BMI body mass index, GCSE The General Certificate 
of Secondary Education, HRV heart rate variability, SD standard deviation.

Complete data (n) Missing (%) Range / Number (Male) Mean SD

Young Middle Old Young Middle Old Young Middle Old Young Middle Old Young Middle Old

Age (years) 164 325 219 0 0 0 18–37 38–67 68–99 29.5 52.5 76.6 5.5 8.5 5.4

Sex (Male) 164 325 219 0 0 0 79 159 111 – – – – – -

Diastolic (mmHG) 142 265 169 13.4 18.5 22.8 51.7–94.3 50–118.7 49–114.3 69.9 74.9 72.4 8.7 10.4 10.7

Systolic (mmHG) 142 265 169 13.4 18.5 22.8 92.3–141 79.3–172.3 82.3–178.3 112.3 118.7 130.1 11 14.6 18.9

Heart Rate (beats/
minute) 142 265 169 13.4 18.5 22.8 43.3–95.7 39–96.3 44.7–107.7 65.5 64.5 68 10.1 9.5 12

HRV low frequency 
(ms2) 135 299 170 17.7 8 22.4 5.5–9283.7 13–15,784.9 1.3–1304.4 1163 834.9 231.8 1184.3 1393.2 257.7

HRV high frequency 
(ms2) 135 299 170 17.7 8 22.4 23.4–7129.8 10.2–5332.9 5.5–3543.8 1422.3 648.2 264.6 1226.6 767.3 378.1

BMI (kg/m2) 142 268 177 13.4 17.5 19.2 16.8–37.7 17.6–48.3 19.9–44.3 23.8 25.9 27.1 4 4.9 4

Cattell sub-score 1 154 307 199 6.1 5.5 9.1 6–12 3–12 2–12 10.6 9.8 7.8 1.3 1.7 2.1

Cattell sub-score 2 154 307 199 6.1 5.5 9.1 3–13 3–13 1–12 9.6 8.3 6.7 1.9 1.9 1.9

Cattell sub-score 3 154 307 199 6.1 5.5 9.1 7–12 4–12 1–12 10.6 9.5 7.2 1.3 1.7 2

Cattell sub-score 4 154 307 199 6.1 5.5 9.1 1 to 8 1 to 9 1 to 8 6.4 5.4 4.1 1.4 1.6 1.9

Proverbs 149 310 196 9.1 4.6 10.5 0–6 0–6 0–6 4.1 4.7 4.6 1.7 1.6 1.7

Spot the Word 163 325 217 0.6 0 0.9 24–60 30–60 29–60 51.4 54.2 54.3 5.8 4.5 5.9

Medications
(percentage of total 
per drug)

– – – 0 0 0 – – – – – – – – -

 Anti-hypertensives 0.0 8.0 37.4 – – – – – – – – – – – -

 Beta Blockers 0.0 0.9 9.6 – – – – – – – – – – – -

Other diuretics 0.0 2.8 13.2 – – – – – – – – – – – -

Dyslipidemics 0.0 8.6 28.3 – – – – – – – – – – – -

Education
(percentage of total 
by category)

– – – 0.6 0.0 0.5 – – – – – – – – -

 No qualifications 
tried (< 16) 0.6 3.1 16.0 – – – – – – – – – – – -

 GCSEs / O-levels 
(age 16) 11.0 14.2 14.6 – – – – – – – – – – – -

 A-levels (age 18) 15.2 18.5 24.2 – – – – – – – – – – – -

 Degree (over 18) 72.6 64.3 44.7 – – – – – – – – – – – -

General Health
(percentage of total 
by category)

– – – 0.6 0 0.5 – – – – – – – – -

 Excellent 18.9 34.8 28.3 – – – – – – – – – – – -

 Good 62.2 48.3 61.6 – – – – – – – – – – – -

 Fair 15.9 14.8 9.6 – – – – – – – – – – – -

 Poor 2.4 2.2 0 – – – – – – – – – – – -
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than two factors (∆ X2 = 95.04, p < 0.001). We confirmed the validity of the three-factor model in combination 
with cognitive measurements (see Supplementary Section A).

The estimates of factor loadings and covariances for the EFA vascular model are visualised in Fig. 2A and 
detailed fully in Supplementary Table 5. Blood pressure loaded strongly onto the first latent factor, with a small 
contribution from BMI. Pulse pressure loaded strongly onto the second latent factor, with a small negative con-
tribution from heart rate. Both frequencies of heart rate variability loaded similarly onto the third latent factor. 
All latent vascular factors correlated significantly with age (Fig. 3).

To explore whether the model structure remained consistent with age, we repeated EFA on three sub-groups 
of young, middle and old aged participants (Supplementary Section B). In all age groups, the three-factor model 
consistently fit best (Supplementary Table 2). Latent vascular factors produced in the age group specific and 
whole sample EFA correlated highly (r > 0.71, p < 0.001) (Supplementary Fig. 4).

Ability discrepancy.  The cognitive variables (Supplementary Fig. 8) were entered into a two-factor CFA 
and produced latent cognitive factor 1, representing crystallized intelligence, and latent cognitive factor 2, rep-
resenting fluid intelligence (Fig. 2B). The ability discrepancy was calculated by subtracting the participant load-
ings on the fluid factor from those on the crystallized factor47. The calculation of the ability discrepancy was 
based on three assumptions, firstly that the measurement of fluid and crystallized intelligence is invariant to age. 
Moderated non-linear factor analysis suggested that the measurement model did not differ substantially across 
the continuous covariate of age, warranting us to use the factor scores across the lifespan (Supplementary Sec-
tion C). On the second and third additional assumptions, crystallized and fluid intelligence correlated highly 
in young adults, and crystallized intelligence remained stable with age (Supplementary Section C). The ability 
discrepancy showed a strong positive association with age (Fig. 3). It also correlated significantly with the three 
latent vascular factors, with substantial effect sizes (Fig. 3).

Multiple linear regression.  In Model 1 (n = 655, DoF = 642, residual standard error = 0.82), ability discrep-
ancy showed a significant positive relationship with latent vascular factor 2 (std β = 0.195, SE = 0.043, p < 0.001) 
and a significant negative relationship with latent vascular factor 3 (std β = -0.347, SE = 0.039, p < 0.001) (Supple-
mentary Table 6). Thus, while all three latent vascular factors explained shared variance, latent vascular factors 2 
and 3, but not 1, made unique contributions to the ability discrepancy.

Compared to Model 1, Model 2 (n = 655, DoF = 634, residual standard error = 0.65) fit the data better (Sup-
plementary Table 7). Model 2 revealed that the main effects of latent vascular factors 2 and 3 did not remain 
significant when accounting for age. The linear effect of age was significant, std β = 0.711, SE = 0.047, p < 0.001. 
More interesting was a significant interaction between latent vascular factor 2 and the quadratic effects of age 

Figure 2.   A The three-factor Exploratory Factor Analysis model of vascular health. The numeric values 
of cross-loadings < 0.30 (dashed grey arrows) are omitted here for visual clarity and reported fully in 
Supplementary Table 5. B The two-factor Confirmatory Factor Analysis model of cognition. BMI body mass 
index, BP total blood pressure, HR heart rate, HRV HF heart rate variability at high frequency, HRV LF heart 
rate variability at low frequency, LCF latent cognitive factor, LVF latent vascular factor, PP pulse pressure, STW 
spot the word.
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(std β = 0.080, SE = 0.037, p = 0.030). This interaction is visualised in Fig. 4, by splitting the data into three age 
groups. It can be seen that the positive relationship between latent vascular factor 2 and the ability discrepancy 
is over 7 times stronger in the older group compared with the two younger groups.

From Model 2, there was no significant improvement in fit when adding medications (Model 3), interactions 
with sex (Model 4), or interactions between latent vascular factors (Model 5) (Supplementary Table 8). Given 
the lack of evidence supporting these more complex models, any significant parameters in Models 3–5 (Sup-
plementary Tables 9–11) should be considered as suggestive only, and may not survive correction for multiple 
comparisons.

Discussion
In this study, we show that changes in vascular systems across the lifespan have multifactorial effects on cognitive 
function. There are three key observations. First, we identify three latent vascular factors that broadly dissociate 
the autonomic nervous system from distinct components of blood pressure. Second, these factors make distinct 
contributions to age-related cognitive decline, as indexed by the “ability discrepancy” score47. Third, the pulse 
pressure factor was particularly associated with the cognitive ability discrepancy, increasingly so for older adults. 
This remained even after controlling for the use of hypertensive medications and the covariates of sex, education 
and general health. Importantly, the effect of pulse pressure was independent of other latent vascular factors. 
We propose that steps to maintain lower pulse pressure may help to preserve cognitive function into old age.

Three components of vascular health.  A single composite measure was insufficient to capture vascu-
lar health in our exploratory analyses, and the model fit was better with three factors. The evidence for these 
multiple latent vascular factors is consistent with previous model-based and data-driven approaches35,36,92–95. 
There was no evidence that the number of factors changed with age, at least in the sense of fewer factors being 
needed for optimal fit in young, middle or older age sub-groups. The three latent vascular factors were composed 
predominantly of two major blood pressure variables and an autonomic nervous system variable; a decomposi-
tion that agrees with previous studies36,95. This decomposition also mimics established models of cardiovascular 
health (discussed below). The unsupervised construction of these latent vascular factors highlights their distinct 
contributions, which may involve different pathways and require different interventions.

The first factor, latent vascular factor 1, expressed total blood pressure, which is the steady state component 
of blood pressure (Fig. 2). This component is proposed to be mainly influenced by cardiac output and peripheral 
vascular resistance64. The additional contribution of BMI to latent vascular factor 1 fits well with early work show-
ing a strong correlation between BMI and the steady component of blood pressure59. Latent vascular factor 1 was 
positively associated with age and the ability discrepancy (Fig. 3), however it did not significantly predict the 
ability discrepancy, over and above other latent vascular factors, in Model 1 (Supplementary Table 4). Consistent 

Figure 3.   Scatter plots (lower left), distributions (leading diagonal) and Pearson correlations (upper right) 
for latent vascular factors, ability discrepancy and age. Scatter plots show linear associations (blue) and data 
intensity (greyscale). Stars indicate increasing significance on the correlations: ***, p < 0.001; **, p < 0.01; *, 
p < 0.05. Corr correlation coefficient, Discrepancy ability discrepancy, LVF1-3 latent vascular factors 1–3.
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with these observations, Lefferts et al.62 showed that steady blood pressure no longer predicts cognition over 
and above the effects of pulsatile blood pressure and covariates. We previously found that the steady component 
of blood pressure is associated with age-related cerebrovascular dysfunction of the sensorimotor regions, inde-
pendently of the pulsatile component36. This suggests a unique contribution of steady blood pressure to brain 
health, with regional specificity. Future work should establish the possibility of a specific contribution of steady 
state blood pressure to brain functioning, and whether this varies across the lifespan96.

The second component, latent vascular factor 2, expressed pulse pressure, with some contribution from 
heart rate (Fig. 2). Latent vascular factor 2 was positively associated with age (Fig. 3). Given the predominant 
loading by pulse pressure, latent vascular factor 2 likely represents a cerebrovascular element97,98. This is also 
consistent with previous findings that pulse pressure and white matter lesion burden expressed a common latent 
cerebrovascular factor36.

Latent vascular factor 3 expressed resting heat rate variability (Fig. 2), which indexes a specific component 
of the autonomic nervous system22,99,100. The decomposition of autonomic nervous system signals separately 
from cerebrovascular health signals (latent vascular factors 1 and 2) confirms that these are distinct, yet partly 
correlated, constructs of vascular ageing101. The convergence of low and high frequencies of resting heart rate 
variability onto latent vascular factor 3 does not necessarily rule out frequency-specific effects on cognition, or 
frequency-specific effects of task-based heart rate variability modulation/reactivity102,103. Latent vascular factor 
3 associated negatively with age, consistent with previous studies on heart rate variability.

Pulse pressure and age‑related cognitive function.  A novel aspect of our work was to simultaneously 
relate the three latent vascular factors to age-related differences in cognition, specifically the cognitive discrep-
ancy score. In the absence of longitudinal data, this discrepancy is arguably (see below) a better estimate age-
related change than raw individual differences in fluid intelligence. When relating directly to cognitive ability, 
only latent vascular factors 2 and 3 made unique contributions. Note that this does not mean latent vascular fac-
tor 1 has no relationship with cognitive ability; only that we cannot distinguish any such contribution from those 
of factors 2 and 3. The negative relationship for latent vascular factor 3 shows that higher heart-rate variability 
is associated with lower ability discrepancy, i.e., more variable heart rate is associated with less discrepancy, i.e., 
fluid intelligence that is closer to what would be expected from crystallized intelligence.

However, the relationship between latent vascular factor 3 and cognitive discrepancy was no longer significant 
when adjusting for age. This is consistent with cross-sectional studies where the association between resting heart 
rate variability and executive functions is accounted for by age and systemic vascular health104–106. Future studies 
should investigate how the shared variance between heart rate variability, systemic vascular health, age and cogni-
tion is linked to changes in cerebral blood flow, tissue integrity and neural function9,20,58. Heart rate variability is 

Figure 4.   A visualisation of the effect of latent vascular factor 2, expressing predominantly pulse pressure, 
on the ability discrepancy for complete case data (n = 655). Note that age was a continuous variable for the 
interaction tested, but here participants are plotted as discrete groups of young (18–37 years, n = 154), middle 
(38–67 years, n = 307) and old (68–88 years, n = 194) for visualisation purposes only. LVF2 latent vascular factor 
2.
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also theorised to link to domain specific measures of cognition, including emotional regulation20–22,91,107. Future 
research should also explore whether heart rate variability affects emotional regulation independently of other 
vascular factors, and whether this relationship changes with age.

Latent vascular factor 2 made a unique, positive contribution to the ability discrepancy, consistent with 
higher pulse pressure being detrimental to cognitive ability. Like latent vascular factor 3, this contribution was 
no longer significant when adding age to the model. This could be because age is the true driver of ability dis-
crepancy, or that age and latent vascular factor 2 are so highly correlated that we can no longer detect a unique 
effect of the latter. More importantly, we did find a significant interaction between age and latent vascular factor 
2. This was a quadratic effect, consistent with pulse pressure being especially important for cognition in old age, 
rather than changing linearly with age. These findings are consistent with a growing body of literature suggest-
ing that pulsatile, rather than steady, blood pressure is an important factor for brain health and higher cognitive 
functions15,16,62,108–110. Future work needs to evaluate whether maintaining normal pulse pressure across the 
lifespan is the mediating factor of cognitive function and plays a role in the increasing relationship between 
brain function and cognition in old age111–115.

The mechanism by which pulse pressure relates to the ability discrepancy has yet to be identified. Pulse pres-
sure has been proposed to be associated with a trigger point of a positive feedback loop of rising arterial stiff-
ness and pressure that penetrates increasingly into deep brain tissue11. This causes a cascade of molecular and 
cellular damage to cerebral vessels, which ultimately injures the blood brain barrier, promoting the aggregation 
of beta-amyloid116–118, phosphorylated tau119 and white matter hyperintensities11,97,98,120. Pulse pressure induced 
hippocampal damage is theorised to result in impaired episodic memory98, while it also uniquely contributes to 
cerebrovascular dysfunction in frontoparietal regions36. The recruitment of frontoparietal regions is of particular 
interest here, given that their involvement in fluid ability processing is partly explained by age-related hypop-
erfusion in these areas121. Separately, pulse pressure is associated with amyloid-dependent hypometabolism in 
frontoparietal regions122, which has in turn been associated with the ability discrepancy score47. Our research 
adds to this evidence by showing, in a population-based lifespan cohort, that pulsatile, rather than steady state 
blood pressure, is a predictor of cognitive decline (ability discrepancy), and this is particularly so for older adults. 
We propose that pulse pressure links to cognitive ageing through a distinct mechanism of cellular and molecu-
lar changes in cerebral vessels36,98,121. We further highlight pulse pressure as an emerging therapeutic target to 
prevent cognitive decline in ageing97.

Limitations.  Our study has limitations. The results were based on a population-based cross-sectional cohort 
and cannot directly speak to longitudinal ageing, i.e. individuals’ progression over time. For example, cross-
sectional data may also be confounded by generational effects, such as the general increase in education and a 
decrease in blood pressure seen across recent decades. While we tried to approximate cognitive change via the 
discrepancy score (see below), our conclusions are restricted to the effects of age and its correlates, as assessed 
across individuals, and we cannot rule out the possibility that differences in vascular health are the consequence 
rather than the cause of differences in cognitive ability. Nonetheless, though the cross-sectional nature of our 
study cannot speak directly to the expansive body of literature on effects of mid-life blood pressure on late-life 
cognition109,123,124, our findings can generate hypotheses to test in longitudinal datasets. It should also be noted 
that the population-based adult-lifespan sample (18–88 years) used here is likely to be healthier, with lower vari-
ability in cardiovascular function, than samples used in other reports54.

The discrepancy between an individual’s score on fluid versus crystallized intelligence was used to approxi-
mate cognitive decline, on the assumptions that 1) measurement of fluid and crystallized intelligence is invariant 
to age, 2) the two are highly correlated in youth, and 3) crystallized measures do not change with age. Each of 
these assumptions was tested and satisfied (see Supplementary Section C). In brief, we showed that the measure-
ment model for fluid and crystallized intelligence was invariant to age. Secondly, though crystallized intelligence 
showed some increase from youth to mid-life (which could be generational), and though it has previously been 
shown to decline in very old age70, any such effects of ageing were much smaller than those on fluid intelligence. 
Finally, the two measures were highly correlated in young adulthood. It is possible that this high correlation 
means that some aspects of general cognitive ability are lost when subtracting them, though the assumption 
here is that this shared variance largely reflects age-invariant individual differences (such as genetics), and so is 
less relevant to our present question about vascular effects on cognitive ageing. Indeed, it has been argued that 
accounting for crystallized abilities helps adjust scores on tests of fluid ability that may be artificially lower than 
expected, e.g. owing to verbal materials and/or complex instructions in such tests125.

We estimated a subset of potential vascular factors, based on a limited set of measures on a single visit. Our 
measures were relatively easy to acquire in practice on a large scale. The reactivity of the autonomic system to 
an event or stressor, which may be cognitive, emotional or physical in nature, e.g. phasic heart rate variability102, 
could prove more sensitive to the resting state heart rate variability estimates used here. It is also possible that 
there are more than three latent vascular factors, but we cannot test that here with six vascular measures84, and 
to do so would require a greater number of vascular measures to be collected. For example, future work could 
test whether cholesterol levels126 comprise an independent factor, or instead load on one or more of the three 
latent vascular factors identified here, or examine lifestyle factors such as physical activity, smoking and socio-
economic status.

It may seem surprising that we found no evidence that medications related to vascular health contribute to 
ability discrepancy, or at least modulate the effects of our latent vascular factors on ability discrepancy. This may 
be because the indirect effects of medication on ability discrepancy are mediated fully through their direct effects 
on latent vascular factors. Alternatively, it could be that, while medications affect current latent vascular factors, 
they may be given too late to prevent pre-medication levels of vascular factors like pulse pressure from already 
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causing irreversible effects on cognitive ability127, or that the effects of chronic stable medication are mitigated 
by homeostasis. Either way, future research could investigate the mechanisms through which latent vascular 
factors mediate cognitive change, for example through damage to cerebral vessels, changes in brain perfusion 
or neuroinflammation, perhaps by direct manipulation of medications.

In summary, we show that vascular ageing has multifactorial relationships with cognitive ageing. Of the 
three latent vascular factors, an increase in the factor expressing pulse pressure was uniquely associated with 
the cognitive discrepancy score, and this relationship was stronger for older adults. We suggest that maintaining 
low pulse pressure may help to preserve cognitive function into old age.

Data availability
The dataset is freely accessible on the Cam-CAN portal, subject to a data sharing agreement request: https://​
camcan-​archi​ve.​mrc-​cbu.​cam.​ac.​uk/​dataa​ccess. Analysis scripts can be downloaded: https://​github.​com/​DebsK​
ing/​Disti​nct_​Vascu​lar_​Compo​nents_​Relate_​To_​Cogni​tion.
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