1,068 research outputs found

    Nutrient Dynamics and Gas Production in Aquatic Ecosystems: The Effects and Utilization of Mercury and Nitrogen in Sediment-Water Microcosms

    Get PDF
    Sixteen sediment-water microcosms designed to allow complete gas, liquid, and solid mass balances of gases, nutrients, and mercury were studies under dark conditions or varying light intensity for a period of 189 days. Results indicated that the microcosm technique is a very sensitive method of analyzing microbial dynamics in sediment water systems. Gas quantity and composition changes were easy to monitor and were especially sensitive to light and nutrient variations. Nitrogen fixation occurred in all lighted systems (blue-green algae nitrogen fixers, Anabaena, and others) and was adequate to insure that no nitrogen limitation occurred even though nitrogen limitation was imposed on the system. Sediments apparently did not act as a significant source of nitrogen. Iron and phosphorus were in excess and as such were closely linked as would be predicted on the basis of chemical equilibria. Non-equilibrium chemical behavior of such elements would apparently result only when appreciable amounts of the compound or element is utilized in growth

    Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets

    Get PDF
    T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. Š 2009 Kim, Maly

    Recombinant prion protein induces a new transmissible prion disease in wild-type animals

    Get PDF
    Prion disease is a neurodegenerative malady, which is believed to be transmitted via a prion protein in its abnormal conformation (PrPSc). Previous studies have failed to demonstrate that prion disease could be induced in wild-type animals using recombinant prion protein (rPrP) produced in Escherichia coli. Here, we report that prion infectivity was generated in Syrian hamsters after inoculating full-length rPrP that had been converted into the cross-β-sheet amyloid form and subjected to annealing. Serial transmission gave rise to a disease phenotype with highly unique clinical and neuropathological features. Among them were the deposition of large PrPSc plaques in subpial and subependymal areas in brain and spinal cord, very minor lesioning of the hippocampus and cerebellum, and a very slow progression of disease after onset of clinical signs despite the accumulation of large amounts of PrPSc in the brain. The length of the clinical duration is more typical of human and large animal prion diseases, than those of rodents. Our studies establish that transmissible prion disease can be induced in wild-type animals by inoculation of rPrP and introduce a valuable new model of prion diseases

    Clinical application of polysialylated deoxyribonuclease and erythropoietin

    Get PDF
    administered twice or thrice weekly), and retained in vivo efficacy. Conclusion: This approach has been clinically validated in phase I (in healthy volunteers) and II studies of PSA-EPO [for managing anemia in patients with chronic kidney disease (CKD)].Background: While protein therapeutics are invaluable in managing numerous diseases, many require frequent injections to maintain therapeutically effective concentrations, due to their short half-life in circulation. PolyXen™, a platform and patented technology employing biodegradable, non-immunogenic and hydrophilic Polysialic Acids (PSA) for drug delivery, is being utilized to overcome such limitations, thereby potentially enabling the clinical utility of a broad range of protein therapeutics. Here, we report the recent progress on two development candidates, polysialylated deoxyribonuclease I (PSA-DNase) and polysialylated erythropoietin (PSA-EPO). Methods and Results: Chemical polysialylation of DNase I (DNase) using PSA with different chain length at various conjugation sites led to improved stability against proteases and thermal stress, and slightly reduced enzymatic activity. Polysialylation of EPO resulted in retention of protein structure and PSA-EPO remained biologically active. PSA-EPO had a significantly prolonged circulating half-life (e.g. t 1/2 of PSA-EPO = ~400 h in patients after subcutaneous administration, aimed for once monthly administration, vs. t 1/2 of EPO = ~22

    Efficiency of Organelle Capture by Microtubules as a Function of Centrosome Nucleation Capacity: General Theory and the Special Case of Polyspermia

    Get PDF
    Transport of organelles along microtubules is essential for the cell metabolism and morphogenesis. The presented analysis derives the probability that an organelle of a given size comes in contact with the microtubule aster. The question is asked how this measure of functionality of the microtubule aster is controlled by the centrosome. A quantitative model is developed to address this question. It is shown that for the given set of cellular parameters, such as size and total tubulin content, a centrosome nucleation capacity exists that maximizes the probability of the organelle capture. The developed general model is then applied to the capture of the female pronucleus by microtubules assembled on the sperm centrosome, following physiologically polyspermic fertilization. This application highlights an unintuitive reflection of nonlinearity of the nucleated polymerization of the cellular pool of tubulin. The prediction that the sperm centrosome should lower its nucleation capacity in the face of the competition from the other sperm is a stark illustration of the new optimality principle. Overall, the model calls attention to the capabilities of the centrosomal pathway of regulation of the transport-related functionality of the microtubule cytoskeleton. It establishes a quantitative and conceptual framework that can guide experiment design and interpretation

    Double Diffraction Dissociation at the Fermilab Tevatron Collider

    Get PDF
    We present results from a measurement of double diffraction dissociation in pˉp\bar pp collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width Δη0>3\Delta\eta^0>3 (overlapping η=0\eta=0) is found to be 4.43±0.02(stat)±1.18(syst)mb4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb} [3.42±0.01(stat)±1.09(syst)mb3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}] at s=1800\sqrt{s}=1800 [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.Comment: 10 pages, 4 figures, using RevTeX. Submitted to Physical Review Letter

    Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC

    Get PDF
    We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be submitted to Physical Review C as a regular article. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore