55 research outputs found

    Deglaciation of Fennoscandia

    Get PDF
    To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This 25 is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, we locate the LGM extent of the ice sheet in northwestern Russia further east than previously suggested and conclude that it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP, and propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models

    OCTOPUS database (v.2)

    Full text link
    OCTOPUS v.2 is an Open Geospatial Consortium (OGC) compliant web-enabled database that allows users to visualise, query, and download cosmogenic radionuclide, luminescence, and radiocarbon ages and denudation rates associated with erosional landscapes, Quaternary depositional landforms, and archaeological records, along with ancillary geospatial (vector and raster) data layers. The database follows the FAIR (Findability, Accessibility, Interoperability, and Reuse) data principles and is based on open-source software deployed on the Google Cloud Platform. Data stored in the database can be accessed via a custom-built web interface and via desktop geographic information system (GIS) applications that support OGC data access protocols. OCTOPUS v.2 hosts five major data collections. CRN Denudation and ExpAge consist of published cosmogenic 10Be and 26Al measurements in modern fluvial sediment and glacial samples respectively. Both collections have a global extent; however, in addition to geospatial vector layers, CRN Denudation also incorporates raster layers, including a digital elevation model, gradient raster, flow direction and flow accumulation rasters, atmospheric pressure raster, and CRN production scaling and topographic shielding factor rasters. SahulSed consists of published optically stimulated luminescence (OSL) and thermoluminescence (TL) ages for fluvial, aeolian, and lacustrine sedimentary records across the Australian mainland and Tasmania. SahulArch consists of published OSL, TL, and radiocarbon ages for archaeological records, and FosSahul consists of published late-Quaternary records of direct and indirect non-human vertebrate (mega)fauna fossil ages that have been systematically quality rated. Supporting data are comprehensive and include bibliographic, contextual, and sample-preparation- and measurement-related information. In the case of cosmogenic radionuclide data, OCTOPUS also includes all necessary information and input files for the recalculation of denudation rates using the open-source program CAIRN. OCTOPUS v.2 and its associated data curation framework allow for valuable legacy data to be harnessed that would otherwise be lost to the research community. The database can be accessed at https://octopusdata.org (last access: 1 July 2022). The individual data collections can also be accessed via their respective digital object identifiers (DOIs) (see Table 1)

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Glacial geology of Bayan Har Shan, northeastern Tibetan Plateau

    No full text
    The paleoglaciology of the Tibetan Plateau is still largely unexplored, despite its importance for regional and global climate reconstructions. In this thesis a comprehensive glacial geological record is presented from an extensive part of the northeastern Tibetan Plateau centred on the Bayan Har Shan. Glacial reconstructions for this region range from restricted mountain glaciers through the intermediate-size regional-scale Huang He ice sheet to a plateau-scale Tibetan ice sheet. To provide a robust basis for glacial reconstructions, this thesis provides conclusions based on two principle methods, remote sensing and field studies. The remote sensing of a 90 m resolution digital elevation model and 15- and 30 m resolution satellite imagery renders a detailed data set with complete spatial coverage of large- and medium-scale glacial landforms, and large-scale plateau geomorphology. Observations from fieldwork campaigns add detailed point information for the distribution of glacial deposits. Geomorphological glacial traces such as glacial valleys, glacial lineations, marginal moraines, meltwater channels, and hummocky terrain occur frequently in elevated mountain areas, indicating former alpine-style glaciations. Glacial deposits in the form of till, erratic boulders, and glaciofluvial sediments are common in areas with mapped glacial landforms, but also beyond, in areas lacking large-scale glacial landforms. For extensive plateau areas in-between formerly glaciated mountain blocks, there is a striking absence of glacial landforms and sediments, indicating that these areas, perhaps, never were ice covered. Interestingly, glacial deposits occur further away from the mountain blocks than the large- and medium-scale glacial landforms, indicating insignificant erosion beneath the maximum ice covers close to their margins. The large-scale geomorphology of the northeastern Tibetan Plateau is characterised by a low-relief plateau surface with glacial valleys in elevated mountain blocks and marginal steep V-shaped valleys. This geographical distribution indicates a dominance of glacial erosion in the elevated mountain areas and a dominance of fluvial erosion along the steep plateau margins, dissecting a relict plateau surface. The outline of the relict plateau surface mimics the proposed outline of the Huang He ice sheet, suggesting that the inferred ice sheet may represent a misinterpreted relict surface with scattered glacial traces. In conclusion, the glacial geology examined in the Bayan Har Shan region is consistent with paleo-glaciers of varying extent restricted to elevated mountain areas. Even though extensive icefields/ice caps were centred on discrete mountain areas, there is no indication that these ice masses merged but rather that they were separated from each other by unglaciated plateau areas. The presented glacial geological record will be used in further studies towards a robust paleoglaciological reconstruction for the northeastern Tibetan Plateau

    Palaeoglaciology of the northeastern Tibetan Plateau

    No full text
    This study concerns the palaeoglaciation of the northeastern Tibetan Plateau, with emphasis on the Bayan Har Shan (Shan = Mountain) in the headwaters of Huang He (Yellow River). To reconstruct past glacier development multiple techniques, including remote sensing, field investigations, cosmogenic exposure dating, and numerical modelling have been employed. Analysis of the large-scale geomorphology indicates that glacial erosion has been dominant in the elevated mountain areas on the low-relief plateau, whereas fluvial erosion outpaces glacial erosion along the plateau margin. Landform and sediment records yield evidence for multiple local glaciations, restricted to the highest mountain areas, and a maximum glaciation beyond the mountain front. Absence of data supporting the former presence of proposed ice sheets, plateau-wide or regional, tentatively indicates that no ice sheet glaciation occurred on the northeastern Tibetan Plateau. Cosmogenic exposure dating of boulders, surface pebbles, and sediment sections in central Bayan Har Shan indicates that its record of past glaciations predates the global Last Glacial Maximum (LGM). Based on a world-wide analysis, yielding that wide age disparity within apparent exposure age datasets is most likely caused by post-glacial shielding processes, the Bayan Har Shan exposure ages constrain four periods of glaciation with minimum ages of 40-65 ka, 60-100 ka, 95-165 ka, and undetermined oldest stage. Similar to Bayan Har Shan, the plateau-wide distribution of boulders with pre-LGM exposure ages close to present-day glaciers shows that its LGM glaciers were generally not much larger than today. The results of a high resolution glacier model applied to nine regions across the plateau indicates that temperature depressions of 2-4 K are enough to expand glaciers beyond their global LGM extent, implying that during periods of Northern Hemisphere glaciation the Tibetan Plateau was not much colder than today or became exceedingly dry.At the time of doctoral defence the following publications were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript

    Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression estimates

    No full text
    The Tibetan Plateau holds an ample record of past glaciations, and there is an extensive set of glacial deposits dated by exposure dating. Here a compilation is presented of 10Be exposure ages from 485 glacial deposits with 1855 individual samples on the Tibetan Plateau, and ELA depression estimates for the glacial deposits based on a simple toe to headwall ratio approach. To recalculate the Tibetan Plateau exposure ages, 10Be production rates from 24 calibration sites across the world are compiled and recalibrated yielding an updated global reference 10Be production rate. The recalculated exposure ages from the Tibetan Plateau glacial deposits are then divided into three groups based on exposure age clustering, to discriminate good (well-clustered) from poor (scattered) deglaciation ages. A major part of the glacial deposits have exposure ages affected by prior or incomplete exposure, complicating exposure age interpretations. The well-clustered deglaciation ages are primarily from mountain ranges along the margins of the Tibetan Plateau with a main peak between 10 and 30 ka, indicating glacial advances during the global LGM. A large number of deglaciation ages older than 30 ka indicates maximum glaciation predating the LGM, but the exposure age scatter generally prohibits accurate definition of the glacial chronology. The ELA depression estimates scatter significantly, but the main part is remarkably low. Average ELA depressions of 337 ± 197 m for the LGM and 494 ± 280 m for the pre-LGM indicate restricted glacier expansion

    Glacial geomorphology of the central Tibetan Plateau

    No full text
    The glacial geomorphology of the central Tibetan Plateau was mapped over 285,000 km2. Here we present a map covering 135,000 km2 at a scale of 1:660,000. The glacial geomorphology was mapped using 15 and 30 m resolution Landsat 7 ETM+ satellite imagery, a 90 m resolution SRTM digital elevation model, and satellite and aerial images displayed in Google Earth. Four landform categories were discernible and mapped; glacial valleys, marginal moraines, glacial lineations, and hummocky terrain. The mapped landforms indicate multiple glacial advances of valley and piedmont glaciers. The mapped landform record lends no support to individual ice centres having coalesced to form a plateau-wide ice sheet.

    Glacial geomorphology of the Bayan Har sector of the NE Tibetan Plateau

    No full text
    We here present a detailed glacial geomorphological map covering 136,500 km2 of the Bayan Har sector of the northeastern Tibetan Plateau - an area previously suggested to have nourished the most extensive Quaternary glaciers of the Tibetan Plateau. The map, presented at a scale of 1:650,000, is based on remote sensing of a 90 m SRTM digital elevation model and 15/30 m Landsat ETM+ satellite imagery. Seven landform types have been mapped; glacial valleys, glacial troughs, glacial lineations,marginal moraines, marginal moraine remnants, meltwater channels and hummocky terrain. A large number of glacial landforms exist, concentrated around mountain blocks protruding above the surrounding plateau area, testifying to former glacial activity. In contrast, large plateau areas of lower altitude lack glacial landforms. The mapped glacial geomorphology indicates multiple former glacial advances primarily by valley and piedmont glaciers, but lends no support to the hypothesis of ice sheet scale glaciation in the area. The presented glacial geomorphological map demonstrates the usefulness of remote sensing techniques for mapping the glacial geomorphology of the Tibetan Plateau, and it will be used for reconstructing the paleoglaciology of the Bayan Har sector of the northeastern Tibetan Plateau.Part of urn:nbn:se:su:diva-750
    corecore