12 research outputs found

    Role of Hepatic Stellate Cells in the Early Phase of Liver Regeneration in Rat: Formation of Tight Adhesion to Parenchymal Cells

    Get PDF
    We investigated activation mechanisms of hepatic stellate cells (HSCs) that are known to play pivotal roles in the regeneration process after 70% partial hepatectomy (PHx). Parenchymal liver cells (PLCs) and non-parenchymal cells (NPLCs) were isolated and purified from the regenerating livers at 1, 3, 7, 14 days after PHx. Each liver cell fraction was stained by immunocytochemistry using an anti-desmin antibody as a marker for HSCs, anti-alpha-smooth muscle actin (alpha-SMA) as a marker for activated HSCs, and 5-bromo-2'-deoxyuridine (BrdU) for detection of proliferating cells. Tissue sections from regenerating livers were also analyzed by immunohistochemistry and compared with the results obtained for isolated cell fractions. One and 3 days after PHx, PLC-enriched fraction contained HSCs adhered to PLCs. The HSCs adhered to PLCs were double positive for BrdU and alpha-SMA, and formed clusters suggesting that these HSCs were activated. However, HSC-enriched fraction contained HSCs not adhered PLCs showed positive staining for anti-desmin antibody but negative for anti-alpha-SMA antibody. These results suggest that HSCs are activated by adhering to PLCs during the early phase of hepatic regeneration

    Oxidation Regulates the Inflammatory Properties of the Murine S100 Protein S100A8

    Get PDF
    The myeloid cell-derived calcium-binding murine protein, S100A8, is secreted to act as a chemotactic factor at picomolar concentrations, stimulating recruitment of myeloid cells to inflammatory sites, S100A8 may be exposed to oxygen metabolites, particularly hypochlorite, the major oxidant generated by activated neutrophils at inflammatory sites. Here we show that hypochlorite oxidizes the single Cys residue (Cys(41)) of S100A8. Electrospray mass spectrometry and SDS-polyacrylamide gel electrophoresis analysis indicated that low concentrations of hypochlorite (40 mu M) converted 70-80% of S100A8 to the disulfide-linked homodimer, The mass was 20,707 Da, 92 Da more than expected, indicating additional oxidation of susceptible amino acids (possibly methionine). Phorbol 12-myristate 13-acetate activation of differentiated HL-60 granulocytic cells generated an oxidative burst that was sufficient to efficiently oxidize exogenous S100A8 within 10 min, and results implicate involvement of the myeloperoxidase system. Moreover, disulfide-linked dimer was identified in lung lavage fluid of mice with endotoxin-induced pulmonary injury. S100A8 dimer was inactive in chemotaxis and failed to recruit leukocytes in vivo. Positive chemotactic activity of recombinant Ala(41)S100A8 indicated that Cys41 was not essential for function and suggested that covalent dimerization may structurally modify accessibility of the chemotactic hinge domain. Disulfide-dependent dimerization may be a physiologically significant regulatory mechanism controlling S100A8-provoked leukocyte recruitment

    Development of the Gout Tophus: An Hypothesis

    No full text

    Greenshell™ Mussels: A Review of Veterinary Trials and Future Research Directions

    No full text
    The therapeutic benefits of Greenshell™ mussel (GSM; Perna canaliculus) preparations have been studied using in vitro test systems, animal models, and human clinical trials focusing mainly on anti-inflammatory and anti-arthritic effects. Activity is thought to be linked to key active ingredients that include omega-3 polyunsaturated fatty acids, a variety of carotenoids and other bioactive compounds. In this paper, we review the studies that have been undertaken in dogs, cats, and horses, and outline new research directions in shellfish breeding and high-value nutrition research programmes targeted at enhancing the efficacy of mussel and algal extracts. The addition of GSM to animal diets has alleviated feline degenerative joint disease and arthritis symptoms, and chronic orthopaedic pain in dogs. In horses, GSM extracts decreased the severity of lameness and joint pain and provided improved joint flexion in limbs with lameness attributed to osteoarthritis. Future research in this area should focus on elucidating the key active ingredients in order to link concentrations of these active ingredients with their pharmacokinetics and therapeutic effects. This would enable consistent and improved efficacy from GSM-based products for the purpose of improved animal health

    The G82S Polymorphism Promotes Glycosylation of the Receptor for Advanced Glycation End Products (RAGE) at Asparagine 81: COMPARISON OF WILD-TYPE RAGE WITH THE G82S POLYMORPHIC VARIANT*

    No full text
    Interaction between the receptor for advanced glycation end products (RAGE) and its ligands amplifies the proinflammatory response. N-Linked glycosylation of RAGE plays an important role in the regulation of ligand binding. Two potential sites for N-linked glycosylation, at Asn25 and Asn81, are implicated, one of which is potentially influenced by a naturally occurring polymorphism that substitutes Gly82 with Ser. This G82S polymorphic RAGE variant displays increased ligand binding and downstream signaling. We hypothesized that the G82S polymorphism affects RAGE glycosylation and thereby affects ligand binding. WT or various mutant forms of RAGE protein, including N25Q, N81Q, N25Q/G82S, and N25Q/N81Q, were produced by transfecting HEK293 cells. The glycosylation patterns of expressed proteins were compared. Enzymatic deglycosylation showed that WT RAGE and the G82S polymorphic variant are glycosylated to the same extent. Our data also revealed N-linked glycosylation of N25Q and N81Q mutants, suggesting that both Asn25 and Asn81 can be utilized for N-linked glycosylation. Using mass spectrometry analysis, we found that Asn81 may or may not be glycosylated in WT RAGE, whereas in G82S RAGE, Asn81 is always glycosylated. Furthermore, RAGE binding to S100B ligand is affected by Asn81 glycosylation, with consequences for NF-κB activation. Therefore, the G82S polymorphism promotes N-linked glycosylation of Asn81, which has implications for the structure of the ligand binding region of RAGE and might explain the enhanced function associated with the G82S polymorphic RAGE variant
    corecore