75 research outputs found

    The Vascular Flora of Ordway Prairie McPherson County, South Dakota

    Get PDF
    The vascular vegetation of Ordway Prairie, a preserve maintained by The Nature Conservancy as an example of virgin prairie in McPherson County, South Dakota, was studied to determine its present composition. The sample comprised representatives of each species recognized in each of the 13 square-mile sections within the prairie, collected in 1975 and 1 9 7 6 . Three hundred nine different species, representing 170 genera in 55 plant families were found. One thousand six hundred forty five permanent herbarium specimens, serving as vouchers for their distribution, are now in the herbarium of South Dakota State University

    Comparative performance of some popular ANN algorithms on benchmark and function approximation problems

    Full text link
    We report an inter-comparison of some popular algorithms within the artificial neural network domain (viz., Local search algorithms, global search algorithms, higher order algorithms and the hybrid algorithms) by applying them to the standard benchmarking problems like the IRIS data, XOR/N-Bit parity and Two Spiral. Apart from giving a brief description of these algorithms, the results obtained for the above benchmark problems are presented in the paper. The results suggest that while Levenberg-Marquardt algorithm yields the lowest RMS error for the N-bit Parity and the Two Spiral problems, Higher Order Neurons algorithm gives the best results for the IRIS data problem. The best results for the XOR problem are obtained with the Neuro Fuzzy algorithm. The above algorithms were also applied for solving several regression problems such as cos(x) and a few special functions like the Gamma function, the complimentary Error function and the upper tail cumulative χ2\chi^2-distribution function. The results of these regression problems indicate that, among all the ANN algorithms used in the present study, Levenberg-Marquardt algorithm yields the best results. Keeping in view the highly non-linear behaviour and the wide dynamic range of these functions, it is suggested that these functions can be also considered as standard benchmark problems for function approximation using artificial neural networks.Comment: 18 pages 5 figures. Accepted in Pramana- Journal of Physic

    Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species

    Get PDF
    Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis ("sleeping sickness") across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity. We reconstruct VSG diversification showing that Trypanosoma congolense uses variant antigens derived from multiple ancestral VSG lineages, whereas in Trypanosoma brucei VSG have recent origins, and ancestral gene lineages have been repeatedly co-opted to novel functions. These historical differences are reflected in fundamental differences between species in the scale and mechanism of recombination. Using phylogenetic incompatibility as a metric for genetic exchange, we show that the frequency of recombination is comparable between Trypanosoma congolense and Trypanosoma brucei but is much lower in Trypanosoma vivax. Furthermore, in showing that the C-terminal domain of Trypanosoma brucei VSG plays a crucial role in facilitating exchange, we reveal substantial species differences in the mechanism of VSG diversification. Our results demonstrate how past VSG evolution indirectly determines the ability of contemporary parasites to generate novel variant antigens through recombination and suggest that the current model for antigenic variation in Trypanosoma brucei is only one means by which these parasites maintain chronic infections

    The genome sequence of <i>Trypanosoma brucei gambiense</i>, causative agent of chronic Human African Trypanosomiasis

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; &lt;i&gt;Trypanosoma brucei gambiense&lt;/i&gt; is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a &lt;i&gt;T. b. brucei&lt;/i&gt; isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between &lt;i&gt;T. b. gambiense&lt;/i&gt; and the reference genome. We sought to identify features that were uniquely associated with &lt;i&gt;T. b. gambiense&lt;/i&gt; and its ability to infect humans.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods and findings:&lt;/b&gt; An improved high-quality draft genome sequence for the group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with &lt;i&gt;T. b. brucei&lt;/i&gt; showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972. A comparison of the variant surface glycoproteins (VSG) in &lt;i&gt;T. b. brucei&lt;/i&gt; with all &lt;i&gt;T. b. gambiense&lt;/i&gt; sequence reads showed that the essential structural repertoire of VSG domains is conserved across &lt;i&gt;T. brucei&lt;/i&gt;.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; This study provides the first estimate of intraspecific genomic variation within &lt;i&gt;T. brucei&lt;/i&gt;, and so has important consequences for future population genomics studies. We have shown that the &lt;i&gt;T. b. gambiense&lt;/i&gt; genome corresponds closely with the reference, which should therefore be an effective scaffold for any &lt;i&gt;T. brucei&lt;/i&gt; genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in &lt;i&gt;T. b. brucei&lt;/i&gt;, no &lt;i&gt;T. b. gambiense&lt;/i&gt;-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans.&lt;/p&gt

    Telomeric expression sites are highly conserved in trypanosoma brucei

    Get PDF
    Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology

    Blocking Synthesis of the Variant Surface Glycoprotein Coat in Trypanosoma brucei Leads to an Increase in Macrophage Phagocytosis Due to Reduced Clearance of Surface Coat Antibodies

    Get PDF
    The extracellular bloodstream form parasite Trypanosoma brucei is supremely adapted to escape the host innate and adaptive immune system. Evasion is mediated through an antigenically variable Variant Surface Glycoprotein (VSG) coat, which is recycled at extraordinarily high rates. Blocking VSG synthesis triggers a precytokinesis arrest where stalled cells persist for days in vitro with superficially intact VSG coats, but are rapidly cleared within hours in mice. We therefore investigated the role of VSG synthesis in trypanosome phagocytosis by activated mouse macrophages. T. brucei normally effectively evades macrophages, and induction of VSG RNAi resulted in little change in phagocytosis of the arrested cells. Halting VSG synthesis resulted in stalled cells which swam directionally rather than tumbling, with a significant increase in swim velocity. This is possibly a consequence of increased rigidity of the cells due to a restricted surface coat in the absence of VSG synthesis. However if VSG RNAi was induced in the presence of anti-VSG221 antibodies, phagocytosis increased significantly. Blocking VSG synthesis resulted in reduced clearance of anti-VSG antibodies from the trypanosome surface, possibly as a consequence of the changed motility. This was particularly marked in cells in the G2/ M cell cycle stage, where the half-life of anti-VSG antibody increased from 39.3 ± 4.2 seconds to 99.2 ± 15.9 seconds after induction of VSG RNAi. The rates of internalisation of bulk surface VSG, or endocytic markers like transferrin, tomato lectin or dextran were not significantly affected by the VSG synthesis block. Efficient elimination of anti-VSG-antibody complexes from the trypanosome cell surface is therefore essential for trypanosome evasion of macrophages. These experiments highlight the essentiality of high rates of VSG recycling for the rapid removal of host opsonins from the parasite surface, and identify this process as a key parasite virulence factor during a chronic infection

    Identification of Trypanosoma brucei RMI1/BLAP75 Homologue and Its Roles in Antigenic Variation

    Get PDF
    At any time, each cell of the protozoan parasite Trypanosoma brucei expresses a single species of its major antigenic protein, the variant surface glycoprotein (VSG), from a repertoire of >2,000 VSG genes and pseudogenes. The potential to express different VSGs by transcription and recombination allows the parasite to escape the antibody-mediated host immune response, a mechanism known as antigenic variation. The active VSG is transcribed from a sub-telomeric polycistronic unit called the expression site (ES), whose promoter is 40–60 kb upstream of the VSG. While the mechanisms that initiate recombination remain unclear, the resolution phase of these reactions results in the recombinational replacement of the expressed VSG with a donor from one of three distinct chromosomal locations; sub-telomeric loci on the 11 essential chromosomes, on minichromosomes, or at telomere-distal loci. Depending on the type of recombinational replacement (single or double crossover, duplicative gene conversion, etc), several DNA-repair pathways have been thought to play a role. Here we show that VSG recombination relies on at least two distinct DNA-repair pathways, one of which requires RMI1-TOPO3α to suppress recombination and one that is dependent on RAD51 and RMI1. These genetic interactions suggest that both RAD51-dependent and RAD51-independent recombination pathways operate in antigenic switching and that trypanosomes differentially utilize recombination factors for VSG switching, depending on currently unknown parameters within the ES

    The practice of 'doing' evaluation: Lessons learned from nine complex intervention trials in action

    Get PDF
    Background: There is increasing recognition among trialists of the challenges in understanding how particular 'real-life' contexts influence the delivery and receipt of complex health interventions. Evaluations of interventions to change health worker and/or patient behaviours in health service settings exemplify these challenges. When interpreting evaluation data, deviation from intended intervention implementation is accounted for through process evaluations of fidelity, reach, and intensity. However, no such systematic approach has been proposed to account for the way evaluation activities may deviate in practice from assumptions made when data are interpreted.Methods: A collective case study was conducted to explore experiences of undertaking evaluation activities in the real-life contexts of nine complex intervention trials seeking to improve appropriate diagnosis and treatment of malaria in varied health service settings. Multiple sources of data were used, including in-depth interviews with investigators, participant-observation of studies, and rounds of discussion and reflection.Results and discussion: From our experiences of the realities of conducting these evaluations, we identified six key 'lessons learned' about ways to become aware of and manage aspects of the fabric of trials involving the interface of researchers, fieldworkers, participants and data collection tools that may affect the intended production of data and interpretation of findings. These lessons included: foster a shared understanding across the study team of how individual practices contribute to the study goals; promote and facilitate within-team communications for ongoing reflection on the progress of the evaluation; establish processes for ongoing collaboration and dialogue between sub-study teams; the importance of a field research coordinator bridging everyday project management with scientific oversight; collect and review reflective field notes on the progress of the evaluation to aid interpretation of outcomes; and these approaches should help the identification of and reflection on possible overlaps between the evaluation and intervention.Conclusion: The lessons we have drawn point to the principle of reflexivity that, we argue, needs to become part of standard practice in the conduct of evaluations of complex interventions to promote more meaningful interpretations of the effects of an intervention and to better inform future implementation and decision-making. © 2014 Reynolds et al.; licensee BioMed Central Ltd

    Environmental contributions to disparities in pregnancy outcomes.

    Get PDF
    One of the most persistent disparities in American health status is the pronounced difference in birth outcomes between non-Hispanic black and non-Hispanic white women. Poor pregnancy outcomes have a substantial impact on mortality, morbidity, and health care costs. Increasing evidence indicates that environmental exposures are associated with poor birth outcomes. This paper reviews the latest research on how environmental exposures affect pregnancy outcomes and then discusses how these exposures may be embedded within a context of significant social and host factor stress. The analysis suggests that environmental, social, and host factors are cumulatively stressing non-Hispanic black women and that this cumulative stress may be a cause of the persistent disparities in pregnancy outcomes
    • …
    corecore