100 research outputs found

    An Efficient Object-Oriented Exploration Algorithm for Unmanned Aerial Vehicles

    Get PDF
    Autonomous exploration of unknown environments usually focuses on maximizing the volumetric exploration of the surroundings. Object-oriented exploration, on the other hand, tries to minimize the time spent on the localization of some given objects of interest. While the former problem equally considers map growths in any free direction, the latter fosters exploration towards objects of interest partially seen and not yet accurately identified. The proposed work relates to a novel algorithm that focuses on an object-oriented exploration of unknown environments for aerial robots, able to generate volumetric representations of surroundings, semantically enhanced by labels for each object of interest. As a case study, this method is applied both in a simulated environment and in real-life experiments on a small aerial platform

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    Hyperdominance in Amazonian Forest Carbon Cycling

    Get PDF
    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant’ species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases

    Get PDF
    OBJECTIVE: Immune-mediated inflammatory diseases (IMIDs) are heterogeneous and complex conditions with overlapping clinical symptoms and elevated familial aggregation, which suggests the existence of a shared genetic component. In order to identify this genetic background in a systematic fashion, we performed the first cross-disease genome-wide meta-analysis in systemic seropositive rheumatic diseases, namely, systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis and idiopathic inflammatory myopathies. METHODS: We meta-analysed ~6.5 million single nucleotide polymorphisms in 11 678 cases and 19 704 non-affected controls of European descent populations. The functional roles of the associated variants were interrogated using publicly available databases. RESULTS: Our analysis revealed five shared genome-wide significant independent loci that had not been previously associated with these diseases: NAB1, KPNA4-ARL14, DGQK, LIMK1 and PRR12. All of these loci are related with immune processes such as interferon and epidermal growth factor signalling, response to methotrexate, cytoskeleton dynamics and coagulation cascade. Remarkably, several of the associated loci are known key players in autoimmunity, which supports the validity of our results. All the associated variants showed significant functional enrichment in DNase hypersensitivity sites, chromatin states and histone marks in relevant immune cells, including shared expression quantitative trait loci. Additionally, our results were significantly enriched in drugs that are being tested for the treatment of the diseases under study. CONCLUSIONS: We have identified shared new risk loci with functional value across diseases and pinpoint new potential candidate loci that could be further investigated. Our results highlight the potential of drug repositioning among related systemic seropositive rheumatic IMIDs

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    GNGraph: Self-Organizing Maps for Autonomous Aerial Vehicle Planning

    No full text
    The present letter tackles the problem of planning a collision-free path in a known environment from a general point of view. We address the problem by using an unsupervised learning algorithm to generate a sparse graph representing the topological structure of the environment and use it for planning paths in 3D spaces. We propose GNGraph, an integrated solution combining the Growing Neural Gas algorithm to generate the sparse graph, a stop criterion to guarantee the graph’s connectivity and a collision check to assess the edges and nodes validity. The proposed solution has been tested on simulated and real environment maps, and compared against a state-of-the-art graph planning algorithm among other global planning methods

    An Efficient Framework for Autonomous UAV Missions in Partially-Unknown GNSS-Denied Environments

    No full text
    Nowadays, multirotors are versatile systems that can be employed in several scenarios, where their increasing autonomy allows them to achieve complex missions without human intervention. This paper presents a framework for autonomous missions with low-cost Unmanned Aerial Vehicles (UAVs) in Global Navigation Satellite System-denied (GNSS-denied) environments. This paper presents hardware choices and software modules for localization, perception, global planning, local re-planning for obstacle avoidance, and a state machine to dictate the overall mission sequence. The entire software stack has been designed exploiting the Robot Operating System (ROS) middleware and has been extensively validated in both simulation and real environment tests. The proposed solution can run both in simulation and in real-world scenarios without modification thanks to a small sim-to-real gap with PX4 software-in-the-loop functionality. The overall system has competed successfully in the Leonardo Drone Contest, an annual competition between Italian Universities with a focus on low-level, resilient, and fully autonomous tasks for vision-based UAVs, proving the robustness of the entire system design

    An Integrated Dynamic Fall Protection and Recovery System for Two-Wheeled Humanoids

    Get PDF
    Robots face the eventuality of falling. Unplanned events, external disturbances and technical failures may lead a robot to a condition where even an effective dynamic stabilization is not sufficient to maintain the equilibrium. Therefore, it is essential to equip robotic platforms with both active and passive fall protection means to minimize damages, and enable the recovery and restart without physical human intervention. This work introduces a method to design an integrated safety system for two-wheeled humanoids. As a case study, the method is applied to a robot and experimentally tested under several conditions corresponding to different causes of robot instability, such as motor jamming, external disturbances, and sudden shut-down
    corecore