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Abstract— Autonomous exploration of unknown environ-
ments usually focuses on maximizing the volumetric exploration
of the surroundings. Object-oriented exploration, on the other
hand, tries to minimize the time spent on the localization
of some given objects of interest. While the former problem
equally considers map growths in any free direction, the latter
fosters exploration towards objects of interest partially seen
and not yet accurately identified.

The proposed work relates to a novel algorithm that focuses
on an object-oriented exploration of unknown environments for
aerial robots, able to generate volumetric representations of
surroundings, semantically enhanced by labels for each object
of interest.

As a case study, this method is applied both in a simulated
environment and in real-life experiments on a small aerial
platform.

I. INTRODUCTION

The latest advancement in aerial robotics research com-
bined with the inherent characteristics of Micro Aerial Ve-
hicles (MAV) systems, i.e. flexibility, and low cost, has led
to their extensive usage in a variety of civil tasks. MAV
platforms are valuable since they allow to gather information
quickly, with high precision, and not less important, the
use of such a technology in dangerous environments may
also reduce the risks to human operators. Some of the
best known tasks performed by drones are infrastructure
inspection [1], [2], surveillance and exploration [3], [4], 3D
building reconstruction [5], [6], precision agriculture [7],
industrial inspection [8], deliver of goods [9] and, recently,
SARS-CoV-2 disinfection of indoor facilities [10].

An area of study of UAV that is constantly increasing
interest in academic research, as well as international funding
agencies and organisations, is Search and Rescue (SAR). For
example, since 2018 DARPA has promoted the Subterranean
Challenge* (SubT) Search and Rescue competition and the
EU has founded many projects like SHERPA in 2013 (FP7-
ICT). Both of these projects are oriented to autonomous
searching for objects in hazardous scenarios.

In a SAR mission, localizing survivors is a challenging
problem as building plans cannot be used as a reference for
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navigation due to structural changes that may have occurred.
Rescue workers face challenging situations in post-disaster
scenarios while carrying out their missions. They have to
be aware of possible threats that could endanger the explo-
ration, like gas leaks, weak building structures or suspicious
packages; as well as to any possible clues that may lead to a
victim faster or explain the disaster’s cause. However, even if
rescue workers should take their time to meticulously explore
the environment, time is also a critical factor that can impact
a victim’s survival. In this context MAVs can provide a fast
response due to their capability to sneak through rubble-
obstructed paths and reach full exploration of the place while
minimizing the exposure and risk of human workers’ injury.
Nevertheless, to be helpful in real-life application, MAVs
must rely on autonomous features to be able to either assist
the remote operator or perform autonomously the task.

The work presented in this paper focuses on the searching
of objects belonging to certain classes of interest during
the exploration of an unknown environment by a MAV
platform. The contribution of this work is a vision-based
autonomous exploration algorithm oriented towards object
localization. The main novelty of the proposed algorithm is
a new approach for finding objects in a dense map by labeling
their bounding boxes. Based on a next-best-view algorithm,
it is paired with a strategy to steer the exploration towards
points of interest detected with deep learning techniques.

The proposed algorithm utilizes an RGB-D camera to
obtain information from the objects of interest, which is later
included in the exploration map to obtain a semantically
enhanced knowledge of the environment. Furthermore, if
the object in question is beyond the limits of the currently
explored map, it is projected to the known space’s frontier, as
shown in Fig. 1. In this way, the autonomous system keeps
a record of what it sees and increases its attention in the ob-
ject’s direction. The efficiency of the algorithm is evaluated
by measuring the average time of object localization.

The remaining of this paper is structured as follows:
section II provides a brief description of the state-of-the-
art solutions for autonomous exploration algorithms. In sec-
tion III, the problem is stated and the proposed approach
is described, while experiments are depicted and analyzed in
section IV. Finally, section V summarizes the main novelties,
results and future project developments.
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Fig. 1: Proposed algorithm core idea. Projection of object detection
to the currently explored map frontier. Object localization uses a
single ray cast, later expanded using a wave-alike propagation.

II. RELATED WORK

Autonomous exploration in unknown environments is a
problem that has been addressed with many methods, which
can be summarized in two main categories: Frontier-based
and Sampled-based. The frontier-based approach continu-
ously explores the boundaries between known and unknown
space, maximizing the exploration of the scenario. On the
other hand, sample-based methods explore new paths in the
already explored map and select the most valuable ones. An
example of this kind of algorithms is the Next-Best-View
(NBV) formulation[11], which expands a Rapidly-exploring
Random Tree (RRT) of new sampled viewpoints in the map
and looks for the best node, i.e. the one that maximizes an
exploration-related objective function.

Juliá et al. [12] highlight the difference in exploration
time between autonomous exploration methods, pointing out
that frontier-based approaches take more time to explore an
unknown environment because their criteria chooses low-
cost solutions that are usually near the current position.
Whereas, sample-based approaches search for areas with
high value which may postpone small areas to later stages in
the exploration task. Lu et al. [13] presented a work for an
efficient and optimal strategy to generate points in frontier-
based approaches using information gains aiming to save
exploration time. Moreover, sample-based approaches easily
allow adding gain formulations to the overall exploration
gain, such as object visualization or unexplored volume [14],
[15], [16].

Selin et al. [17] proposed a hybrid exploring strategy by
mixing both frontier-based and sample-based algorithms. The
former was used to select the goal for the global exploration
and the latter was adopted for local exploration of the
environment. On the other hand, Schmid et al. [18] proposed
an online informative path planning algorithm to overcome
costly RRT computation and local minimum problems. Basi-
cally, the proposed solution keeps alive non-executed parts of
new generated sampled viewpoints expanding a growing tree

between algorithm iterations and moreover it uses a single
objective function to perform global searching. The proposed
solution has been compared with the standard NBV formula-
tion [11] and the previously mentioned hybrid approach [17].
The evaluation was carried on comparing the ability to
explore and reconstruct volumetric indoor environments and
the results showed that the hybrid approach as well as the
informative path planning, i.e. [17] and [18] respectively,
outperform the standard NBV planner. Furthermore, Schmid
et al. [18] algorithm performs slightly better regarding path
planning generation thanks to their continuous improvement
of the unique grown tree.

Dang et al. in [14] and [15] have proposed methods
for autonomous exploration and simultaneous object search
that enhanced an NBV planner with a specific gain for
objects detection. Their exploration also produces a semantic
map, based on Octomap [19], which gives more information
about the environment’s occupancy. Also, Ashour et al.
[20] suggests a semantically-aware exploration for object
detection using semantic segmentation techniques, using as
well an NBV formulation. While highly effective, these
methods have limitations related to discarding large parts
of the tree on each iteration and the possibility of selecting
locally optimal solutions that may lead to sub-optimal paths
[18].

Some exploration algorithms have already been tested
in real-life hazardous scenarios as the ones used by the
competitors of DARPA Subterranean (SubT) Challenge. This
competition tests exploration algorithms in a challenging
scenario as SAR missions. Among the participant teams, of
particular interest are the work of Petrlik et al. [21] and
Dang et al. [22] which decided to use YOLO Convolutional
Neural Network (CNN) for the object detection of artifacts.
However, considering the low visibility of this typology
of SAR environments, the exploration algorithms employed
are fully focused on volumetric gain rather than an object-
oriented search.

III. PROPOSED APPROACH

The ideal behaviour for a robot designed for an au-
tonomous exploration task is the capability to explore as
fast as possible the unknown environment while focusing
the attention on specific artefacts valuable for the mission
accomplishment. In term of requirements, this behaviour
translates to an object-oriented exploration where the system
must perform a fast but selective inspection of the environ-
ment. To accomplish such a desired behavior, we design a
system that localizes specific items in the scene and either
maps them in a 3D occupancy map or steer the mapping
process towards the detected object if it relies on outside the
mapped space. The proposed method is based on Schmid et
al. [18] path planning where we introduce: (i) a new gain
formulation to balance between exploring unknown parts
of the scene and move towards objects of interest; (ii) an
enhanced map representation based on Voxblox, and finally,
(iii) a new method to retrieve the voxels representing an
object inside a bounding box.
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A. Problem Description

The problem addressed in this work refers to the searching
problem of objects belonging to certain classes of interest
(e.g. civilians or vehicles) while exploring an unknown
bounded volume V ⊂ R3.

The robot configuration ξi is defined as the position ~xi
and orientation ~qi of the robot at instant i with respect to
a fixed world frame W . The exploration problem is defined
as to find a safe and collision-free path {ξ0, ξ1, . . . , ξn} to
run across; during the exploration, the previously unknown
volume can be identified as either free (Vfree) or occupied
(Vocc) and discretized in a map M composed by voxels, a
representation of the continuous space with cubical volumes.
Thanks to an object detection algorithm we are also able to
tell which object the voxel represents.

B. Object Detection

The most widely used method for environmental aware-
ness considers using a computer vision algorithm on frames
captured from a 2D color camera. Therefore, we assume
that the robot is equipped with an on-board camera rigidly
attached to it, so that a static transformation between the
robot frame and the camera frame exists and can be defined
at the design stage.

The object detection module takes color camera frames
as input and gives, for each frame, a set of bounding boxes
around the objects of interest as output. A bounding box
is defined as (x, y, w, h), where (x, y) is its position in the
image and w and h is its width and height, respectively. All
coordinates are expressed in pixels.

The actual logic implemented to find objects in the image
may vary and depends on the specific application domain.
For simple tasks, it may be sufficient to apply legacy
computer vision techniques (e.g. color segmentation, contour
detection, shape matching) whereas, for detecting objects
(e.g. vehicles, people, or animals) in a complex scenario,
it may be better to choose more complex approaches such
as deep neural networks.

C. Volumetric Mapping

The environment is represented by Voxblox [23] map,
which incrementally builds Euclidean Signed Distance Fields
(ESDFs) from Truncated Signed Distance Fields (TSDFs) in
a voxel-hashing approach, allowing insertions and lookups
of voxels in O(1) time complexity. We extend the common
Voxblox data structure to include semantic knowledge, hence
every voxel contains robot traversability information as well
as a label corresponding to the detected class as output of
the object detection module, and the associated confidence
score.

In the literature, in order to map a detected object, the
commonly used approach consists in projecting the bounding
box edges (as pixels) through the map by ray-casting each
pixel and marking the occupied voxels that the rays reach
with the same label of the corresponding box. However,
depending either on the size of the mapped space or on
the geometric characteristics of the detected object, this kind

of solution is prone to errors. More in detail, if an object
is detected beyond the mapped space, then the traced rays
will not find any occupied voxels and hence the information
related to the detected object will be lost. Furthermore,
depending on the object geometry, i.e. either if the object is
concave or the bounding box doesn’t fit the object accurately,
some traced rays may not hit the voxels occupied by the
object, and end up beyond the mapped space or, even
worse, in other parts of the map mismatching the semantic
annotation.

To overcome these problems, we propose what we called
the Wavefront Raycast method which allows to mark both
the occupied voxels and the projected voxels belonging to the
frontier of the map with the bounding box label. In particular,
we defined as surface voxels the occupied voxels within
the mapped space and as map-frontier voxels the projected
voxels belonging to the frontier of the map. Formally, a
surface voxel is an occupied voxel with a neighbouring
unoccupied voxel, and a map-frontier voxel is an unknown
voxel with a neighbor unoccupied voxel located on the
boundary of the actual map. The former allows locating
the detected object in the space, the latter gives information
about the direction along which an object outside the current
map boundaries should be located.

Instead of tracing rays through all the bounding box, the
method projects a single ray in the center of the bounding
box. The idea that led to the definition of such a method,
arises from the observation that usually the central pixel of a
bounding box has a higher probability than peripheral pixels
to belong to the item class which the bounding box refers
to. Hence, a ray that is cast from the central pixel of the
bounding box has a high chance to cross either the occupied
voxel belonging to that object or a frontier voxel that points
towards the distant object. Therefore, a wavefront mechanism
is started and propagated with a breadth-first search from
the projected box center. The complete method is shown in
Algorithm 1.

It starts with the initialization of the queue of voxels to
visit queueV , inserting the projected box center vcenter. For
all the voxels popped from that queue, the voxels in the
26-connectivity are marked as visited and, if a non-visited
voxel of the same kind of vcenter (surface voxel or map
frontier voxel) is found, if the re-projection of its center
in the focal plane (using the camera matrix formula) falls
into the bounding box, it is added to queueV . Then, given
the voxel center position vector ~vW , in world frame, the
transformation TCW from camera frame to world frame and
the camera matrix K, the re-projection finds the pixel (u,v)
corresponding to a voxel using (1).

~vC = TCW ~vW
~p = K ~vC
u = px/pz
v = py/pz

(1)

In the case that vcenter is a surface voxel, to add the voxel
into the queue, an additional condition needs to be met, i.e.
the surface gradient must be similar to the one computed
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Fig. 2: Frontier Map Voxels update. In (a) the object is detected and, since the object volume is not mapped, only the corresponding
map frontier voxels are labeled, and the robot-voxel center vectors are stored. Then (b) the map frontier voxels get observed, and the
projection toward the new map frontier happens and the voxels found are marked with the same data (label, confidence and direction
vector) of the previously labeled map frontier voxels.

in the center of vcenter. This avoids propagating the search
through discontinuities, for example, the floor on which the
object stands or on the backside of the object itself. The
gradient of a voxel is computed as an interpolation of the
ESDF values of its neighboring voxels. Given the gradient
~gw, computed on voxel w and ~gcenter, computed on vcenter,
the gradient angular similarity condition is met if

~gcenter · ~gw < gTH (2)

is verified, where gTH is a threshold constant.
Once the set of voxels resulting from the ray cast have

been identified, the detected label is assigned to them, and the
confidences are updated according to the current detection
confidence confdet. In particular, if that voxel has not already
a label, the detection confidence is assigned to it, otherwise
it is updated by the factor α(confdet − confvoxel), where α
is a fixed constant, chosen by design.

Moreover, defining as ~cm the center of the voxel m found
by the raycasting operation, the vector ~cm - ~x(tdet) is stored
in the voxel itself. This vector represents the direction that
the robot should keep in order to reach the detected object.

As the exploration evolves, the map changes and gets
refined. This may produce a labeled voxel to become un-
occupied, and, in that case, it is reset to unlabeled. In the
case of a map frontier voxel, this would cause the loss of
the direction along which the previously detected object is.
To solve this issue, all the map frontier voxels, before being
reset, are projected along the direction stored in them, at the
previous detection, into a new map frontier voxel, in which
the label and confidence of the precedent one are copied, as
shown in Fig. 2. This method prevents losing track of the
direction of the detected object respecting to the robot, and
is useful for the planner to find objects even if they have not
been mapped.

D. Planner Algorithm

As previously mentioned, we used the RRT* RH-NBV
planner presented in [18], introducing modifications to the
computation of the gains to accomplish a fast object-oriented

Algorithm 1: Wavefront Raycast
Require: bbox detection bounding box
Require: vcenter voxel resulting from raycast to the
bbox center

Require: queueV used for detecting voxels to label
queueV ← ∅
result← ∅
ENQUEUE(queuem, vcenter)
mark vcenter as visited
~gcenter ← vcenter.gradient
while queueV is not empty do

Set p← DEQUEUE(queueV )
Add p to result
foreach w in neighborhood of p do

if w is marked as visited then
continue

end
if bbox contains PROJECTION(w) then

if isSURFACEVOXEL(vcenter) then
if isSURFACEVOXEL(w) then

~gw ← w.gradient
if ~gcenter · ~gw<gTH then

ENQUEUE(queueV , w)
end

end
else

if isMAPFRONTIERVOXEL(w) then
ENQUEUE(queueV , w)

end
end

end
mark w as visited

end
end
return result

mission. It is worth pointing out that a different definition
of cost and gain influences the robot’s behavior, making this
planner versatile for many applications.
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The gain is computed as the combination of an exploration
gain gexpl and an object recognition gain gobj . The first
gain is responsible for incorporating new information into
the occupancy map, whereas the second is responsible for
making the robot focus on the detected objects. We call
V is(ξ) the set of voxels visible from the robot configuration
ξ. The gain gexpl is computed as the number of unobserved
voxels visible from the configuration ξ, and gobj is the
number of labeled map frontier voxels visible from ξ.

gexpl(ξ) =
∑

m∈Vis(ξ)

{
1 if m is unknown
0 otherwise

(3)

gobj(ξ) =
∑

m∈Vis(ξ)

{
1 if m is map frontier voxel
0 otherwise

(4)

It is worth pointing out that, in (4), only the labeled map
frontier voxels contribute to the gain calculation since they
are responsible of leading to objects that have not been
already localized on the map. In fact, we do not consider
the labeled surface voxels because they represent interesting
objects that have already been mapped and, for a fast object
search operation, it is not worth spending too much time on
them.

In (5), the object detection gain and exploration gain are
combined through a weighted summation.

g(ξ) = gexpl(ξ) + βgobj(ξ) (5)

The parameter β is set to a high value to prioritize the
search of objects over the exploration of new parts of the
environment.

IV. EXPERIMENTS

We tested the effectiveness of the algorithm by applying it
on a Search and Rescue (SAR) mission, both in simulation
and real case scenarios. The objective of the mission was to
localize people inside a previously unknown environment.

Since the main objective was to look for people, we
decided to use a Deep Neural Network (DNN) as the object
detection module. Reviewing the state-of-the-art to seek for
suitable solutions, YOLO4 [24] appeared to be a reasonable
trade-off between detection accuracy and inference speed.
It comes pre-trained with MS COCO dataset which has 80
classes, including people.

Moreover, since both the PC running the simulations and
the MAV’s companion computer were based on NVIDIA
architectures, tkDNN [25] has been exploited for hardware
acceleration. More in detail, tkDNN is a library built on
top of cuDNN and TensorRT, allowing it to easily trans-
form a DNN model written in any popular framework (e.g.
Darknet, PyTorch, Tensorflow, etc.) into a smaller model
specifically optimized for the underlying hardware. Then, we
implemented a ROS node using the tkDNN inference library,
subscribing to the camera color frames and publishing, as a
result, custom messages with bounding boxes information.

A. Algorithm evaluation on simulated environment

To validate the features of our algorithm, we proceed to
test its behavior and tune its parameters in a controlled-
simulated environment. Moreover, we used the simulated
environment as a test-bed to compare our approach with
the planner proposed by Dang et al. [14] for Autonomous
Exploration and simultaneous Object Search (AEOS). We
implemented the exploration algorithm they described in
their paper and ran it in our simulation stack.

The synthetic environment consists of a
20.0m× 20.0m× 2.5m maze, without roof, with 4
people in it. The position of the people is known and it is
used to establish when the algorithm actually localizes a
person during the exploration phase. The nominal bounding
volume of a person is 0.5m× 0.33m× 2.0m, however, it
is enlarged to 1.0m× 1.0m× 2.0m to take into account
inaccuracies coming from the UAV odometry (especially on
the xy plane) as well as from the detection module.

It is worth mentioning that this enlarged bounding volume
does not compromise the effectiveness of people localization
for a SAR task. Finally, this enlarged bounding volume
defines the position ground truth for each person in the map
that has been used in the offline analysis to assess when a
person was actually detected by the two evaluated algorithms.
More in detail, a person is considered to be localized if the
number of labeled voxels inside the ground truth bounding
volume is above a given threshold nvox.

The UAV has no prior information of the environment
and its vertical displacement is limited to 2.25m to avoid
finding people by overflying the maze’s walls. Simulated
experiments duration was limited to 15min to resemble the
average autonomy of a standard UAV system.

We performed 30 simulations for each exploration algo-
rithm due to the stochastic nature of the planners. For each
experiment, we saved the map every 30 s to track the progress
of the exploration. And, for each of these checkpoints, we
counted the number of voxels representing people contained
in the map. We used an nvox = 20 because this number of
voxels covers more than 50% of the volume of a person.

PX4 Software in the Loop (PX4-SITL) is used to test the
proposed algorithm. PX4-SITL is based on RotorS simulator
[26], a Gazebo-based simulation environment, that provides
reliable multirotor models. However, the advantage of using
PX4-SITL is that it is designed to be used with the drone’s
autopilot so that the algorithm can be tested directly with the
same topics and wrappers that the real prototype uses.

The drone is equipped with a stereo camera that pro-
vides real-time feedback of the simulated environment. This
camera is in line with the hardware integrated on the real
prototype. In simulation, the depth images are taken directly
from the camera. Also, the drone’s position is obtained
from the odometry of the PX4 simulator instead of using
a position estimation algorithm. Depth images and drone’s
position are not computed during the simulations because,
on our prototype, they are directly calculated on the camera
hardware.
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The simulated experiment parameters are summarized in
Table I, while mapper and planner standard parameters are
presented in Table II and III, respectively.

Parameter Value

Camera FoV [ah, av] 80°, 50°
Voxel size r 0.2m

Collision Radius 0.4 m
Max. Acceleration 1.0m s−2

Max. Velocity 1.0m s−1

Max. Yaw Rate 1.6 rad s−1

Max. Collision Radius 0.5m

Camera Range dplanner
max 4.0m

Edge Length lmax 1.5m

TABLE I: Parameters used through all the experiments

Parameter Value

Gradient angular threshold gTH 0.4
Confidence update factor α 0.4

TABLE II: Parameters of the mapper

Parameter Value

Local Sampling Count nlocal 10
Local Sampling Radius rlocal 1.5m

Updating Radius rupdate 3.0m
Ray Sub-sampling Factor fsub 3.0
Discount Factors (AEOS) λ, γ, τ 0.5, 0.3, 105
Discount Factors (Ours) λ 3.0

Objects Gain Factor β 3000

TABLE III: Parameters of the planner

All experiments were done in a Docker container running
Ubuntu 18.04, ROS Melodic built from source, OpenCV 4.4,
CUDA 11.1, cuDNN 8.1 and TensorRT 7.2.2. The hardware
platform was a 6 cores Intel(R) Core(TM) i7-8700K CPU
with 32GB of RAM and an Nvidia GeForce GTX 1080
GPU.

Fig. 3 depicts a box plot of the time required to find 1, 2,
3 or 4 people in each exploration approach. From this figure,
it can be noticed a significant reduction in the average time
needed to find a person. Moreover, as the number of people
increases, the worst time of our experiments (maximum time)
slightly becomes better than the best of AEOS’s (minimum
time). It is worth noticing that in 21 out of 30 experiments,
the AEOS planner finds at most 3 out of 4 people in the
maze during the 15min long simulation.

In Fig. 4, we present a qualitative comparison of the
trajectory followed by the drone to find all the people hidden
in the maze. The drone’s trajectory and detected people’s
voxels are colored in red, while obstacles (e.g. walls, floor)
are colored according to a gray-scale palette depending
on the height. In particular, this figure depicts the fastest
experiment of each approach until they correctly locate the
last person. Both experiments are represented, respectively,
by the lowest point in the last couple of box plots shown

1 2 3 4
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Fig. 3: Comparison of time required to find people in the environ-
ment by the two methods.

(a) AEOS (b) Ours

Fig. 4: Best exploration path. Comparison trajectory performed by
both exploration algorithms to find the 4 persons hidden in a maze.

in Fig. 3 (abscissa value equal to 4 people), where it can
be noticed a significant reduction of time to accomplish the
mission. From a quantitative point of view, the time spent by
the drone using the AEOS algorithm was more than 10min,
while our algorithm took less than 5min.

B. Algorithm testing on real platform

After testing on simulations, we performed functional
validation of the entire software stack on a real drone
platform. In this case no external systems were used, since all
the computation related to environment perception, motion
planning, and control run on-board the system.

The hardware platform consists of a custom-built quad-
rotor that relies on Pixhawk 4 board for low-level attitude rate
control and on NVIDIA Jetson XAVIER NX for high-level
software modules, i.e. navigation, exploration, mapping and
detection algorithms. To account for the perception task, the
system integrates two front-facing cameras, and in particular,
the Intel Realsense T265 camera to obtain the drone’s local
position and motion estimation, and the Intel Realsense
D435i camera to obtain the depth and the RGB information.
The height above the ground is measured by a Garmin Lidar
Lite v3. The platform’s weight is 1.5 kg and its dimensions
are 0.45m× 0.45m× 0.20m.
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Fig. 5: Photo-sequence of a UAV using the proposed object-oriented exploration algorithm in a real-life experiment. The upper sequence
shows, the system’s trajectory and mapping, while the lower sequence shows the corresponding moment from an external point of view.

The experiment consisted in the exploration of a small
room, where there were obstacles, with no prior information
related to maps and/or geometry. We only set the exploration
boundaries area to be in line with the actual room size, i.e.
5.0m× 3.0m× 2.0m. The mission goal was to look for a
person lost in the room.

Considering the space to be explored is small, the camera
range dplannermax is limited to 2.0m. In this way, it is possible
to appreciate the algorithm’s features instead of the camera’s
range capacity.

Fig. 5 depicts some snapshots of the experiment. The
proposed method adjusts its planned trajectory (in green)
to rapidly traverse the scene once the object of interest
is distinguished. The picture follows the same color rep-
resentation as Fig. 4. Moreover, in this photo-sequence it
is possible to appreciate frontier-map voxels (in blue). It is
clearly highlighted that the algorithm skips mapping a large
part of the environment by giving a bigger priority to the
object of interest.

V. CONCLUSIONS

In this paper, we present an efficient object-oriented ex-
ploration algorithm for UAVs in unknown environments.
The algorithm exploits map annotations from a DNN ob-
ject detector to recognize objects in the scene and steer
the exploration towards them. The proposed algorithm has
been extensively tested in synthetic environment based on
ROS/Gazebo framework. In order to assess the effectiveness
of the presented solution a comparison with the most ad-
vanced method at the state of the art has been performed in a
SAR-like scenario. Moreover, tests on a real MAV have been
done to prove both the feasibility of the proposed solution
on a limited resources platform and the capability to map
and localize objects of interest in a real-life scenario.
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