233 research outputs found

    Intermolecular London Dispersion Interactions of Azobenzene Switches for Tuning Molecular Solar Thermal Energy Storage Systems

    Get PDF
    The performance of molecular solar thermal energy storage systems (MOST) depends amongst others on the amount of energy stored. Azobenzenes have been investigated as high-potential materials for MOST applications. In the present study it could be shown that intermolecular attractive London dispersion interactions stabilize the (E)-isomer in bisazobenzene that is linked by different alkyl bridges. Differential scanning calorimetry (DSC) measurements revealed, that this interaction leads to an increased storage energy per azo-unit of more than 3 kcal/mol compared to the parent azobenzene. The origin of this effect has been supported by computation as well as X-ray analysis. In the solid state structure attractive London dispersion interactions between the C−H of the alkyl bridge and the π-system of the azobenzene could be clearly assigned. This concept will be highly useful in designing more effective MOST systems in the future

    Pharmacological Validation of Trypanosoma brucei Phosphodiesterases as Novel Drug Targets

    Get PDF
    The development of drugs for neglected infectious diseases often uses parasite-specific enzymes as targets. We here demonstrate that parasite enzymes with highly conserved human homologs may represent a promising reservoir of new potential drug targets. The cyclic nucleotide-specific phosphodiesterases (PDEs) of Trypanosoma brucei, causative agent of the fatal human sleeping sickness, are essential for the parasite. The highly conserved human homologs are well-established drug targets. We here describe what is to our knowledge the first pharmacological validation of trypanosomal PDEs as drug targets. High-throughput screening of a proprietary compound library identified a number of potent hits. One compound, the tetrahydrophthalazinone compound A (Cpd A), was further characterized. It causes a dramatic increase of intracellular cyclic adenosine monophosphate (cAMP). Short-term cell viability is not affected, but cell proliferation is inhibited immediately, and cell death occurs within 3 days. Cpd A prevents cytokinesis, resulting in multinucleated, multiflagellated cells that eventually lyse. These observations pharmacologically validate the highly conserved trypanosomal PDEs as potential drug target

    Differential Calculi on Commutative Algebras

    Full text link
    A differential calculus on an associative algebra A is an algebraic analogue of the calculus of differential forms on a smooth manifold. It supplies A with a structure on which dynamics and field theory can be formulated to some extent in very much the same way we are used to from the geometrical arena underlying classical physical theories and models. In previous work, certain differential calculi on a commutative algebra exhibited relations with lattice structures, stochastics, and parametrized quantum theories. This motivated the present systematic investigation of differential calculi on commutative and associative algebras. Various results about their structure are obtained. In particular, it is shown that there is a correspondence between first order differential calculi on such an algebra and commutative and associative products in the space of 1-forms. An example of such a product is provided by the Ito calculus of stochastic differentials. For the case where the algebra A is freely generated by `coordinates' x^i, i=1,...,n, we study calculi for which the differentials dx^i constitute a basis of the space of 1-forms (as a left A-module). These may be regarded as `deformations' of the ordinary differential calculus on R^n. For n < 4 a classification of all (orbits under the general linear group of) such calculi with `constant structure functions' is presented. We analyse whether these calculi are reducible (i.e., a skew tensor product of lower-dimensional calculi) or whether they are the extension (as defined in this article) of a one dimension lower calculus. Furthermore, generalizations to arbitrary n are obtained for all these calculi.Comment: 33 pages, LaTeX. Revision: A remark about a quasilattice and Penrose tiling was incorrect in the first version of the paper (p. 14

    Compartmentalized Production of CCL17 In Vivo: Strong Inducibility in Peripheral Dendritic Cells Contrasts Selective Absence from the Spleen

    Get PDF
    Dendritic cells (DCs)* fulfill an important regulatory function at the interface of the innate and adaptive immune system. The thymus and activation-regulated chemokine (TARC/CCL17) is produced by DCs and facilitates the attraction of activated T cells. Using a fluorescence-based in vivo reporter system, we show that CCL17 expression in mice is found in activated Langerhans cells and mature DCs located in various lymphoid and nonlymphoid organs, and is up-regulated after stimulation with Toll-like receptor ligands. DCs expressing CCL17 belong to the CD11b+CD8−Dec205+ DC subset, including the myeloid-related DCs located in the subepithelial dome of Peyer's patches. CCL17-deficient mice mount diminished T cell–dependent contact hypersensitivity responses and display a deficiency in rejection of allogeneic organ transplants. In contrast to lymphoid organs located at external barriers of the skin and mucosa, CCL17 is not expressed in the spleen, even after systemic microbial challenge or after in vitro stimulation. These findings indicate that CCL17 production is a hallmark of local DC stimulation in peripheral organs but is absent from the spleen as a filter of blood-borne antigens

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    Glucocorticoids—All-Rounders Tackling the Versatile Players of the Immune System

    Get PDF
    Glucocorticoids regulate fundamental processes of the human body and control cellular functions such as cell metabolism, growth, differentiation, and apoptosis. Moreover, endogenous glucocorticoids link the endocrine and immune system and ensure the correct function of inflammatory events during tissue repair, regeneration, and pathogen elimination via genomic and rapid non-genomic pathways. Due to their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune cells, tissues and organs, glucocorticoids significantly improve the quality of life of many patients suffering from diseases caused by a dysregulated immune system. Despite the multitude and seriousness of glucocorticoid-related adverse events including diabetes mellitus, osteoporosis and infections, these agents remain indispensable, representing the most powerful, and cost-effective drugs in the treatment of a wide range of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective tissue diseases, as well as many other pathological conditions of the immune system. Depending on the therapeutically affected cell type, glucocorticoid actions strongly vary among different diseases. While immune responses always represent complex reactions involving different cells and cellular processes, specific immune cell populations with key responsibilities driving the pathological mechanisms can be identified for certain autoimmune diseases. In this review, we will focus on the mechanisms of action of glucocorticoids on various leukocyte populations, exemplarily portraying different autoimmune diseases as heterogeneous targets of glucocorticoid actions: (i) Abnormalities in the innate immune response play a crucial role in the initiation and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper (Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly triggered by several different cytokines released by activated Th2 lymphocytes. Using these examples, we aim to illustrate the versatile modulating effects of glucocorticoids on the immune system. In contrast, in the treatment of lymphoproliferative disorders the pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending on the type of cancer. Therefore, we will also give a brief insight into the current knowledge of the mode of glucocorticoid action in oncological treatment focusing on leukemia
    • …
    corecore