13 research outputs found

    Early above- and below-ground responses of subboreal conifer seedlings to various levels of deciduous canopy removal

    Get PDF
    We examined the growth of understory conifers, following partial or complete deciduous canopy removal, in a field study established in two regions in Canada. In central British Columbia, we studied the responses of three species (Pseudotsuga menziesii var. glauca (Beissn.) Franco, Picea glauca (Moench) Voss x Picea engelmannii Parry ex Engelm., and Abies lasiocarpa (Hook.) Nutt.), and in northwestern Quebec, we studied one species (Abies balsamea (L.) Mill.). Stem and root diameter and height growth were measured 5 years before and 3 years after harvesting. Both root and stem diameter growth increased sharply following release but seedlings showed greater root growth, suggesting that in the short term, improvement in soil resource capture and transport, and presumably stability, may be more important than an increase in stem diameter and height growth. Response was strongly size dependent, which appears to reflect greater demand for soil resources as well as higher light levels and greater tree vigour before release for taller individuals. Growth ratios could not explain the faster response generally attributed to true fir species or the unusual swift response of spruces. Good prerelease vigour of spruces, presumably favoured by deciduous canopies, could explain their rapid response to release

    Khorezmian Walled Sites of the Seventh Century Bc—Fourth Century Ad: Urban Settlements? Elite Strongholds? Mobile Centres?

    No full text

    Diacylglycerol Kinase δ Suppresses ER-to-Golgi Traffic via Its SAM and PH Domains

    No full text
    We report here that the anterograde transport from the endoplasmic reticulum (ER) to the Golgi was markedly suppressed by diacylglycerol kinase δ (DGKδ) that uniquely possesses a pleckstrin homology (PH) and a sterile α motif (SAM) domain. A low-level expression of DGKδ in NIH3T3 cells caused redistribution into the ER of the marker proteins of the Golgi membranes and the vesicular-tubular clusters (VTCs). In this case DGKδ delayed the ER-to-Golgi traffic of vesicular stomatitis virus glycoprotein (VSV G) and also the reassembly of the Golgi apparatus after brefeldin A (BFA) treatment and washout. DGKδ was demonstrated to associate with the ER through its C-terminal SAM domain acting as an ER-targeting motif. Both of the SAM domain and the N-terminal PH domain of DGKδ were needed to exert its effects on ER-to-Golgi traffic. Kinase-dead mutants of DGKδ were also effective as the wild-type enzyme, suggesting that the catalytic activity of DGK was not involved in the present observation. Remarkably, the expression of DGKδ abrogated formation of COPII-coated structures labeled with Sec13p without affecting COPI structures. These findings indicate that DGKδ negatively regulates ER-to-Golgi traffic by selectively inhibiting the formation of ER export sites without significantly affecting retrograde transport

    Promise and pitfalls of g-ratio estimation with MRI

    No full text
    The fiber g-ratio is the ratio of the inner to the outer diameter of the myelin sheath of a myelinated axon. It has a limited dynamic range in healthy white matter, as it is optimized for speed of signal conduction, cellular energetics, and spatial constraints. In vivo imaging of the g-ratio in health and disease would greatly increase our knowledge of the nervous system and our ability to diagnose, monitor, and treat disease. MRI based g-ratio imaging was first conceived in 2011, and expanded to be feasible in full brain with preliminary results in 2013. This manuscript reviews the growing g-ratio imaging literature and speculates on future applications. It details the methodology for imaging the g-ratio with MRI, and describes the known pitfalls and challenges in doing so.Comment: This is the accepted version, accepted by NeuroImage. It contains minor revisions suggested by reviewer
    corecore