39 research outputs found

    Roles for globus pallidus externa revealed in a computational model of action selection in the basal ganglia

    Get PDF
    The basal ganglia are considered vital to action selection - a hypothesis supported by several biologically plausible computational models. Of the several subnuclei of the basal ganglia, the globus pallidus externa (GPe) has been thought of largely as a relay nucleus, and its intrinsic connectivity has not been incorporated in significant detail, in any model thus far. Here, we incorporate newly revealed subgroups of neurons within the GPe into an existing computational model of the basal ganglia, and investigate their role in action selection. Three main results ensued. First, using previously used metrics for selection, the new extended connectivity improved the action selection performance of the model. Second, low frequency theta oscillations were observed in the subpopulation of the GPe (the TA or ‘arkypallidal’ neurons) which project exclusively to the striatum. These oscillations were suppressed by increased dopamine activity - revealing a possible link with symptoms of Parkinson’s disease. Third, a new phenomenon was observed in which the usual monotonic relationship between input to the basal ganglia and its output within an action ‘channel’ was, under some circumstances, reversed. Thus, at high levels of input, further increase of this input to the channel could cause an increase of the corresponding output rather than the more usually observed decrease. Moreover, this phenomenon was associated with the prevention of multiple channel selection, thereby assisting in optimal action selection. Examination of the mechanistic origin of our results showed the so-called ‘prototypical’ GPe neurons to be the principal subpopulation influencing action selection. They control the striatum via the arkypallidal neurons and are also able to regulate the output nuclei directly. Taken together, our results highlight the role of the GPe as a major control hub of the basal ganglia, and provide a mechanistic account for its control function

    AKAP79 enables calcineurin to directly suppress protein kinase A activity

    Get PDF
    Interplay between the second messengers cAMP and Ca2+ is a hallmark of dynamic cellular processes. A common motif is the opposition of the Ca2+-sensitive phosphatase calcineurin and the major cAMP receptor, protein kinase A (PKA). Calcineurin dephosphorylates sites primed by PKA to bring about changes including synaptic long-term depression (LTD). AKAP79 supports signaling of this type by anchoring PKA and calcineurin in tandem. In this study, we discovered that AKAP79 increases the rate of calcineurin dephosphorylation of type II PKA regulatory subunits by an order of magnitude. Fluorescent PKA activity reporter assays, supported by kinetic modeling, show how AKAP79-enhanced calcineurin activity enables suppression of PKA without altering cAMP levels by increasing PKA catalytic subunit capture rate. Experiments with hippocampal neurons indicate that this mechanism contributes towards LTD. This non-canonical mode of PKA regulation may underlie many other cellular processes

    Transient Calcium and Dopamine Increase PKA Activity and DARPP-32 Phosphorylation

    Get PDF
    Reinforcement learning theorizes that strengthening of synaptic connections in medium spiny neurons of the striatum occurs when glutamatergic input (from cortex) and dopaminergic input (from substantia nigra) are received simultaneously. Subsequent to learning, medium spiny neurons with strengthened synapses are more likely to fire in response to cortical input alone. This synaptic plasticity is produced by phosphorylation of AMPA receptors, caused by phosphorylation of various signalling molecules. A key signalling molecule is the phosphoprotein DARPP-32, highly expressed in striatal medium spiny neurons. DARPP-32 is regulated by several neurotransmitters through a complex network of intracellular signalling pathways involving cAMP (increased through dopamine stimulation) and calcium (increased through glutamate stimulation). Since DARPP-32 controls several kinases and phosphatases involved in striatal synaptic plasticity, understanding the interactions between cAMP and calcium, in particular the effect of transient stimuli on DARPP-32 phosphorylation, has major implications for understanding reinforcement learning. We developed a computer model of the biochemical reaction pathways involved in the phosphorylation of DARPP-32 on Thr34 and Thr75. Ordinary differential equations describing the biochemical reactions were implemented in a single compartment model using the software XPPAUT. Reaction rate constants were obtained from the biochemical literature. The first set of simulations using sustained elevations of dopamine and calcium produced phosphorylation levels of DARPP-32 similar to that measured experimentally, thereby validating the model. The second set of simulations, using the validated model, showed that transient dopamine elevations increased the phosphorylation of Thr34 as expected, but transient calcium elevations also increased the phosphorylation of Thr34, contrary to what is believed. When transient calcium and dopamine stimuli were paired, PKA activation and Thr34 phosphorylation increased compared with dopamine alone. This result, which is robust to variation in model parameters, supports reinforcement learning theories in which activity-dependent long-term synaptic plasticity requires paired glutamate and dopamine inputs

    A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility

    Get PDF
    There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body

    The Effects of NMDA Subunit Composition on Calcium Influx and Spike Timing-Dependent Plasticity in Striatal Medium Spiny Neurons

    Get PDF
    Calcium through NMDA receptors (NMDARs) is necessary for the long-term potentiation (LTP) of synaptic strength; however, NMDARs differ in several properties that can influence the amount of calcium influx into the spine. These properties, such as sensitivity to magnesium block and conductance decay kinetics, change the receptor's response to spike timing dependent plasticity (STDP) protocols, and thereby shape synaptic integration and information processing. This study investigates the role of GluN2 subunit differences on spine calcium concentration during several STDP protocols in a model of a striatal medium spiny projection neuron (MSPN). The multi-compartment, multi-channel model exhibits firing frequency, spike width, and latency to first spike similar to current clamp data from mouse dorsal striatum MSPN. We find that NMDAR-mediated calcium is dependent on GluN2 subunit type, action potential timing, duration of somatic depolarization, and number of action potentials. Furthermore, the model demonstrates that in MSPNs, GluN2A and GluN2B control which STDP intervals allow for substantial calcium elevation in spines. The model predicts that blocking GluN2B subunits would modulate the range of intervals that cause long term potentiation. We confirmed this prediction experimentally, demonstrating that blocking GluN2B in the striatum, narrows the range of STDP intervals that cause long term potentiation. This ability of the GluN2 subunit to modulate the shape of the STDP curve could underlie the role that GluN2 subunits play in learning and development

    A Diffusive Homeostatic Signal Maintains Neural Heterogeneity and Responsiveness in Cortical Networks

    Get PDF
    Gaseous neurotransmitters such as nitric oxide (NO) provide a unique and often overlooked mechanism for neurons to communicate through diffusion within a network, independent of synaptic connectivity. NO provides homeostatic control of intrinsic excitability. Here we conduct a theoretical investigation of the distinguishing roles of NO-mediated diffusive homeostasis in comparison with canonical non-diffusive homeostasis in cortical networks. We find that both forms of homeostasis provide a robust mechanism for maintaining stable activity following perturbations. However, the resulting networks differ, with diffusive homeostasis maintaining substantial heterogeneity in activity levels of individual neurons, a feature disrupted in networks with non-diffusive homeostasis. This results in networks capable of representing input heterogeneity, and linearly responding over a broader range of inputs than those undergoing non-diffusive homeostasis. We further show that these properties are preserved when homeostatic and Hebbian plasticity are combined. These results suggest a mechanism for dynamically maintaining neural heterogeneity, and expose computational advantages of non-local homeostatic processes

    The coming decade of digital brain research: a vision for neuroscience at the intersection of technology and computing

    Get PDF
    In recent years, brain research has indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modelling at multiple scales— from molecules to the whole brain. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain combines high-quality research, data integration across multiple scales, a new culture of multidisciplinary large-scale collaboration and translation into applications. As pioneered in Europe’s Human Brain Project (HBP), a systematic approach will be essential for meeting the coming decade’s pressing medical and technological challenges. The aims of this paper are to: develop a concept for the coming decade of digital brain research, discuss this new concept with the research community at large, to identify points of convergence, and derive therefrom scientific common goals; provide a scientific framework for the current and future development of EBRAINS, a research infrastructure resulting from the HBP’s work; inform and engage stakeholders, funding organisations and research institutions regarding future digital brain research; identify and address the transformational potential of comprehensive brain models for artificial intelligence, including machine learning and deep learning; outline a collaborative approach that integrates reflection, dialogues and societal engagement on ethical and societal opportunities and challenges as part of future neuroscience research

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
    corecore