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ABSTRACT

In recent years, brain research has indisputably entered a new epoch, driven by substantial methodological advances 
and digitally enabled data integration and modelling at multiple scales— from molecules to the whole brain. Major 
advances are emerging at the intersection of neuroscience with technology and computing. This new science of the 
brain combines high- quality research, data integration across multiple scales, a new culture of multidisciplinary large- 
scale collaboration, and translation into applications. As pioneered in Europe’s Human Brain Project (HBP), a system-
atic approach will be essential for meeting the coming decade’s pressing medical and technological challenges. The 
aims of this paper are to: develop a concept for the coming decade of digital brain research, discuss this new concept 
with the research community at large, identify points of convergence, and derive therefrom scientific common goals; 
provide a scientific framework for the current and future development of EBRAINS, a research infrastructure resulting 
from the HBP’s work; inform and engage stakeholders, funding organisations and research institutions regarding 
future digital brain research; identify and address the transformational potential of comprehensive brain models for 
artificial intelligence, including machine learning and deep learning; outline a collaborative approach that integrates 
reflection, dialogues, and societal engagement on ethical and societal opportunities and challenges as part of future 
neuroscience research.

Keywords: human brain, digital research tools, research roadmap, brain models, data sharing, research platforms.

1. INTRODUCTION

Research in the last decades has yielded impressive 
progress in our understanding of the human brain. In con-
fronting brain complexity, researchers have studied the 
brain at different levels of organisation, from the processes 
at the level of single molecules and genes, synapses, 
cells, and local circuits to the level of the brain as a whole 
organ with areas, nuclei, and their networks, involved in a 
variety of brain functions as well as dysfunction.

Neurological disorders are today the second leading 
cause of death after heart disease with 276 million 

DALYS1 (Disability- Adjusted Life- Years; Global Burden of 
Disease 2019) ( Feigin  et al.,  2019). In 2010, the total cost 
of brain disorders in Europe came to €798 billion ( Olesen 
 et al.,  2012). To address such a challenge, and to develop 
more effective, causal therapies, we need to better 
understand the fundamentals of how the brain works. 
Hereby, we are inevitably confronted with the complexity 
of the organ and its sheer size but also with legitimate 
ethical and methodological limitations that do not allow 

1 https://www . thelancet . com / gbd / about

mailto:k.amunts@fz-juelich.de
https://www.thelancet.com/gbd/about
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all of the necessary datasets to be acquired directly from 
human material. This poses challenges for both empirical 
and digital research. Addressing such a challenge 
requires insights into the underlying structure of the brain, 
physiological phenomena in the organ, and a theoretical 
understanding of neural mechanisms.

Combinations of different methods, such as structural 
and functional magnetic resonance imaging (fMRI), mag-
netoencephalography (MEG), or electroencephalography 
(EEG), have successfully been applied to identify biologi-
cal correlates of sensation, motor control, and executive 
function. However, closing the loops of understanding 
between cellular mechanisms and system- level effects 
requires multiscale neuroscience. Others emphasise that 
we also need to understand the “semantics” of how the 
various brain regions converse with each other ( Douglas 
 &  Martin,  2007). As one example, according to  Buzsáki 
 (2019), global and local oscillations constitute the “syn-
tax” for communication within the brain.

For many brain diseases, genetic mechanisms have 
been elucidated, with concrete relevance for diagnostics 
and therapy. Further, molecular and cellular mechanisms 
of several signal transduction pathways have been deci-
phered. Nevertheless, we are still lacking important 
insights into brain organisation, the relationship between 
brain structure, function, dynamics, and behaviour, its 
reorganisation during learning and sleep, as well as the 
conditions that underlie cognition. Simulation and the 
potential of AI to decipher the organisation of conscious-
ness are already part of neuroscience discourse (see, 
e.g.,  Dehaene  et al.,  2017;  Graziano,  2019). The arrival of 
machines with capacity to simulate consciousness could 
mean that the “hard problem” of consciousness can be 
addressed by simulating the “easy problem” of con-
sciousness ( Chalmers,  1995).

While the multiscale architecture of the brain enables 
its resilience, adaptive capacity, and computational 
power, this property also significantly contributes to the 
inter- individual variability found at all levels of brain organ-
isation. The degree of variability itself varies depending on 
the level, brain region and other factors ( Croxson  et al., 
 2018;  Zilles  &  Amunts,  2013). Understanding variability 
will contribute to improved diagnostics and personalised 
therapies and will facilitate elucidation of the mechanisms 
of cognitive functions. In terms of basic science, this is a 
prerequisite for understanding both evolution and diver-
gent cognitive profiles ( Thiebaut  de  Schotten  &  Forkel, 
 2022).

Innovative neuroimaging, advances in microelectron-
ics, and optical methods have opened a window onto 
brain function at ever- higher spatial and temporal resolu-
tion and over ever- longer periods of time, resulting in 
large amounts of data. Cohorts of thousands of partici-

pants have been enrolled with large numbers of data 
sets, but at lower resolution; these have facilitated the 
identification of factors determining brain health and 
aging such as lifestyle, environmental factors, genetic 
makeup, as well as the interplay between these variables. 
Such empirical research has resulted in significant vol-
umes of highly structured data, a large amount of meta- 
data, and the increasing need for data integration.

So, what questions can already be answered based 
on the current data and where is additional work needed? 
Sydney Brenner stated during his 2002 Nobel lecture, 
“Nature’s Gift to Science” ( Brenner,  2003): “We are 
drowning in a sea of data and starving for knowledge. 
The biological sciences have exploded, largely through 
our unprecedented power to accumulate descriptive 
facts … We need to turn data into knowledge, and we 
need a framework to do it”. Although a large amount of 
data exists, the research aims and methods used in indi-
vidual laboratories are generally very diverse and data 
often cannot be directly compared with each other. More-
over, multi- dimensional data, with high quality, rigorous 
quality control, and provenance tracking (e.g., functional 
imaging data with simultaneously high spatial and tem-
poral resolution and broad coverage including omics 
data), are sparse.

Such data do usually not come from one lab, but from 
many. Therefore, it has become clear that defining and 
achieving ambitious scientific goals will require close col-
laboration between laboratories with expertise in differ-
ent areas of neuroscience and complementary technical 
expertise, for example, specialists in image analysis, 
neuroanatomy, data analysis, computation, physiology, 
biomedicine, modelling, theory, and computing. Several 
(neuro)ethical issues and questions regarding societal 
needs and value are relevant when studying the brain and 
brain diseases— recognition of this fact is leading to 
closer interaction between neuroscientists and research-
ers from humanities. Taken together, these developments 
enhance multidisciplinary collaboration, which needs to 
be appropriately organised and valued.

Such close collaboration across different domains of 
brain research is a defining feature of big international 
projects like the HBP2. The HBP is a European Flagship 
project in the field of Future and Emerging Technologies 
that started in 2013 and concluded in 2023. In 2013, the 
HBP was launched with the aim of achieving a deeper 
understanding of the brain, a goal that aligned with the 
remarkable advancements in computing and digital tech-
nologies during that time ( Amunts  et  al.,  2016,  2019; 
 Markram  et al.,  2011). The HBP was one of the first large- 
scale brain research projects worldwide and played a 

2 https://www . humanbrainproject . eu / en/

https://www.humanbrainproject.eu/en/
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pioneering role in transforming digital brain research into 
a discipline that is more collaborative, reproducible, and 
ethically and socially responsible ( Amunts  et al.,  2022).

The HBP has developed foundations for scientific 
workflows that enable a FAIR (findable, accessible, 
interoperable, and reusable;  Wilkinson  et al.,  2016) com-
parison among multiscale, multi- species experimental 
data and theoretical and data- driven models ( Eriksson 
 et al.,  2022;  Schirner  et al.,  2022). To give a few examples, 
research in the project has led to new insights into the 
mechanisms of learning ( Bellec  et al.,  2020;  Cramer  et al., 
 2020;  Deperrois  et  al.,  2022;  Göltz  et  al.,  2021;  Jordan 
 et  al.,  2021;  Manninen  et  al.,  2020;  Masoli  et  al.,  2021; 
 Stöckl  &  Maass,  2021;  van  den  Bosch  et al.,  2022), visuo- 
motor control ( Abadía  et al.,  2021;  Pearson  et al.,  2021), 
vision ( Chen  et al.,  2020;  Svanera  et al.,  2021;  van  Vugt 
 et  al.,  2018), consciousness ( Demertzi  et  al.,  2019;  Lee 
 et al.,  2022), sleep ( Capone  et al.,  2019;  Le  Van  Quyen 
 et  al.,  2016;  Rosanova  et  al.,  2018), spatial navigation 
( Bicanski  &  Burgess,  2018;  Northoff  et al.,  2020;  Stoianov 
 et al.,  2018;  van  Beest  et al.,  2021), predictive coding and 
perception ( Oude  Lohuis  et al.,  2022), as well as language 
( Dehaene  et al.,  2015) and has resulted in new theoretical 
concepts and analysis methods. A special issue of the 
journal Neuron3 was devoted to cognitive architectures in 
2015. The aim was to bundle together research that is key 
for understanding and modelling human brain function, 
with many of the featured publications resulting from col-
laboration in the ramp- up phase of the HBP ( Dehaene 
 et al.,  2015).

The neuroscience community has been empowered to 
take advantage of the most recent developments in com-
puting, simulation, and artificial intelligence. Experimental 
data, computational models and tools, instruments, and 
dedicated hardware such as neuromorphic systems have 
been created in the project and made available with the 
intention of significantly speeding up developments in 
brain medicine and research as well as providing a model 
for low- energy consumption for the semiconductor indus-
try ( “Big  data  needs  a  hardware  revolution,”  2018). The 
consortium has developed EBRAINS as a collaborative 
research platform with the aim of bringing brain research 
to the next level through digital tools and computation 
and of further developing applications in medicine and 
neuro- inspired technologies. EBRAINS is now part of the 
European Strategy Forum on Research Infrastructures 
(ESFRI) Roadmap. ESFRI aims to support a coherent and 
strategy- led approach to policy- making on research infra-
structures in Europe and to facilitate multilateral initiatives 
leading to the better use and development of research 
infrastructures, at the EU and transcontinental levels. 

EBRAINS is being developed as a sustainable research 
infrastructure— by scientists for scientists.

To address ethical and societal questions, the HBP 
has incorporated principles and practices of Responsible 
Research and Innovation (RRI) into EBRAINS at the gov-
ernance and research levels. The goal is to anticipate, 
reflect on, and undertake network- wide action on these 
and future neuroethical, philosophical, and societal and 
legal challenges and proactively address issues on dual- 
use research of concern, misuse, and commercialisation 
of EBRAINS research and its outcomes ( Stahl  et al.,  2021). 
Looking to the next decade, we here identify gaps in our 
knowledge of the brain based on what has been achieved 
and articulate research goals for the future. We believe 
that efforts towards achieving these goals will benefit from 
progress in digital brain research as well as recent devel-
opments at the interface of technology and computing. 
Digital brain research takes advantage of fields such as 
data science, artificial intelligence, computing, modelling, 
and simulation, atlasing to enable progress in brain 
research, and to translate it into medicine and technology. 
These aims will also profit from the integration of neuro-
science with neuroethics and multidisciplinary collabora-
tion that engages with ethical and societal questions of 
need, acceptability, and desirability.

This manuscript has been developed in a participatory 
process (Annex 1). The work has been initiated by the 
HBP, and the entire research community was invited to 
contribute to shaping the vision by submitting comments. 
This more than 2- years process resulted in substantial 
changes of the original document, a broader represen-
tation of research concepts, sometimes controversially 
discussed, and a focused discussion, for example, with 
regard to the role of modeling and simulation. The authors 
converged in their formulation of common goals and 
steps to achieve them. While we do not claim that there 
is a “one- size- fits- all” approach to addressing these 
aspects, we are convinced that discussions around the 
theme of digital brain research will help drive progress in 
the broader field of neuroscience (see Annex 2).

2. NEUROSCIENCE: STATE OF THE ART

To understand what is missing and to motivate our 
approach for digital brain research, it is critical to con-
sider where we have come from. To illustrate a few key 
steps on this path: modern neuroscience was born in the 
last two decades of the 19th century, when the brain, hith-
erto basically regarded as an unstructured mass, became 
recognised as an intricate network of individual cells, the 
neurons ( DeFelipe,  2009;  Mazzarello,  2010;  Shepherd, 
 2015). New concepts on the segregation of the brain into 
areas, which are relevant for a certain function, gave rise 3 https://www . cell . com / neuron / issue ? pii = S0896 - 6273%2814%29X0043 - 7

https://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7
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to microstructural brain maps at the beginning of the 
20th century (e.g.,  Brodmann,  1909;   Vogt  &  Vogt,  1919). 
Systematic neuropathological studies contributed to a 
deeper understanding of the brain both in health and dis-
ease. The full- brain electroencephalograms of the 1930s 
paved the way for intracellular electrophysiological 
recordings in the 1950s and to a basic understanding of 
the physiology of neurons and synapses. The discovery 
of the concept of chemical neurotransmission in the 
1930s and the subsequent pharmacological revolution  
in the 1950s had great implications for neurology and 
psychiatry ( Carlsson  et al.,  1957;  Dale  et al.,  1936;  Vogt, 
 1954) as well as for our basic understanding of how  
distributed computing networks like our brain can  
adapt flexibly to our changing world ( Dayan,  2012). The 
Hodgkin– Huxley model was introduced in the 1950s to 
describe in mathematical terms action potentials 
( Hodgkin  &  Huxley,  1952). Explorations of the physiology 
of the sensory (mainly visual) and motor systems in the 
1960s and 1970s, and parallel advances in their anatomy, 
provided valuable insights, giving rise to an updated view 
of the brain that we nevertheless now understand was 
somewhat naïve and simplistic ( Shepherd,  2009). The 
1980s saw great advances in our understanding of neu-
ronal membrane biophysics and the functioning of recep-
tors and ion channels ( Sakmann  &  Neher,  1984), while in 
the 1990s the advent of full- brain imaging techniques 
kickstarted a period of intense progress in understanding 
brain organisation, its relation to genes and environment 
as well as individual variability. Novel techniques, includ-
ing molecular biology, genetics, pharmacology, psycho-
physics, neuroimaging, and computational neuroscience, 
in combination with electronics and computing, have 
progressively enriched brain studies ( Finger,  1994).

The beginning of the 21st century saw the develop-
ment of new tools to manipulate and study brain circuits 
such as optogenetics, which, through activation or 
silencing, for the first time allowed investigation of the 
role of specific neuronal types ( Deubner  et  al.,  2019; 
 Emiliani  et al.,  2022;  Häusser,  2021;  Südhof,  2017). Novel 
high- resolution imaging techniques, such as two- photon 
calcium imaging employed in animal experiments, have 
vastly improved our understanding of cellular and sub-
cellular physiology ( Toi  et al.,  2022;   Yang  &  Yuste,  2017). 
In parallel with two- photon imaging, wide- field calcium 
imaging emerged as a powerful tool in systems neurosci-
ence, allowing recording from multiple brain regions 
simultaneously with a sufficient spatio- temporal resolu-
tion to resolve behaviourally relevant information ( Cardin 
 et al.,  2020;  Ren  &  Komiyama,  2021b). The recent devel-
opment of single- cell transcriptomics together with elec-
trophysiological characterisation and morphological 
reconstructions have enabled researchers to obtain a 

solid basis of knowledge concerning the neuronal types 
in the mammalian brain ( Chartrand  et  al.,  2023;  Fuzik 
 et al.,  2016;  Gouwens  et al.,  2020;  Lee  et al.,  2023).

It has been proposed that the global properties of stim-
uli could be encoded by neuronal synchronisation ( Brama 
 et  al.,  2015). For example, the “binding by synchrony” 
( Gray  et al.,  1989) theory held that features, like the colour 
and motion of visual objects, are consolidated into coher-
ent perceptions when the neurons encoding these fea-
tures fire at the same time, with millisecond precision. 
Later studies found that binding by synchrony does not 
occur ( Lamme  &  Spekreijse,  1998;  Roelfsema  et al.,  2004; 
 Thiele  &  Stoner,  2003); rather, features of objects are bound 
into coherent entities by object- based attention which, at 
a neuronal level, increases neuronal firing rates ( Poort 
 et  al.,  2012;  Roelfsema  et  al.,  1998). Morphological and 
high- density recording tools for millisecond characterisa-
tion of brain circuits in animals carrying out specific tasks 
may be within reach in a few years for hippocampo- cortical 
networks ( Klausberger  &  Somogyi,  2008;  Lisman  et  al., 
 2017), motor cortex (  Li  et  al.,  2015), the barrel cortex 
( Staiger  &  Petersen,  2021), the basalo- cortical network 
( Gombkoto  et al.,  2021), and for some hypothalamic net-
works that organise sexual behaviours ( Karigo  et al.,  2021).

At the same time, our theoretical and conceptual 
understanding of particular brain functions has also 
become richer and more complex. Links between anat-
omy and function can be investigated at various scales 
( Zaborszky,  2021). Microscale morphological features 
include myelo- , cyto- , receptor architecture, cell density, 
synapses, single neuron spike pattern, axonal and den-
dritic arborisation patterns, spine density, and gene 
expression, while physiological features range from ion 
channel biophysics to synaptic potentials or neuronal 
spike patterns. Studies have revealed area- specific syn-
aptic organisation, receptor architecture, and arborisa-
tion patterns that show a surprising complexity of 
connections, though it is often unclear how these fea-
tures contribute to specific processing differences within 
and between cortical layers and areal differences ( Amunts 
 et al.,  2020;  Haueis,  2021;  Palomero- Gallagher  &  Zilles, 
 2019;  Rockland,  2022).

At the macroscale, researchers, using MRI, describe 
the brain in terms of interconnected cortical areas, such as 
the macroscale connectional pattern that underlies hierar-
chical processing in the visual system ( Felleman  &  Van 
 Essen,  1991). At this scale, the brain exhibits spontaneous 
and systematic patterns of slow, low- frequency fluctua-
tions in the blood oxygenation level- dependent (BOLD) 
signal measured in part in resting- state functional connec-
tivity studies ( Raichle  et al.,  2001). However, the precise 
relationships between BOLD imaging and details of elec-
trophysiological patterns are yet to be determined. 
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 Architectural types are hypothesised to determine hierar-
chical processing ( Barbas,  2015;  Bastos  et  al.,  2015; 
 Mejias  et al.,  2016;  Vezoli  et al.,  2021). The connectivity of 
transmodal areas allows them to integrate multiple uni-
modal sensory representations into categorical and rule- 
based areas ( Mesulam,  1998;  Pandya  et al.,  2015). Progress 
has been made in bridging connectivity between areas and 
the neuronal complexity of components within areas. Spe-
cifically, the functional imaging BOLD signal used in many 
human studies correlates best with local energy consump-
tion ( Viswanathan  &  Freeman,  2007), likely reflecting den-
dritic activity and interneurons mapped onto layer- spanning 
neurons and cortical layers. Such local microcircuit and 
dendritic activities serve important cognitive functions 
involving the comparison of internal models and top- down 
expectations with bottom- up information flow. These local 
computations might make a crucial contribution to the cel-
lular mechanisms of conscious processing ( Aru  et al.,  2020) 
and be missed in other electrical recording techniques 
measuring neuronal outputs. The understanding of layer- 
specific computation will be an important computational 
breakthrough that can be achieved by combining record-
ing techniques sensitive to local microcircuit activity and 
dendritic activity ( Larkum  et al.,  2018) with corresponding 
theoretical models of cortical computation ( Haider  et al., 
 2021;  Sacramento  et al.,  2018).

The so- called mesoscale has been defined at the level 
of microcircuits, where researchers describe the brain in 
terms of different cell types and their connectivity and 
emergent dynamics. However, the relevant units remain a 
matter of debate. While in the 1970s, cortical columns of 
various sizes (minicolumns, hypercolumns, etc.) were 
thought to be functional modules ( Jones,  1983; 
 Mountcastle,  1997;  Rockland,  2010;  Szentágothai,  1978), 
continued discussions propose a combination of basic 
circuitry types, including feed- forward excitatory, recur-
rent feedback excitatory, feed- forward inhibitory, recur-
rent feedback inhibitory, and inhibitory– inhibitory types 
( Nadasdy  et al.,  2006). These circuits have been shaped 
through evolutionary pressure. Thus, it is important to 
understand the logic of evolving and maturing cortical 
circuits in order to identify specific circuits across spe-
cies; this will tell us to what extent discrete anatomical 
features carry similar or dissimilar functions. An under-
standing of mesoscale circuits is important for properly 
linking micro-  and macroscale descriptions of brain 
organisation, in order to properly infer macroscale 
behaviour from microscale features ( Haueis,  2021). To 
this aim, wide- field fluorescence imaging can bridge the 
gap between neural activity at micro and macro spatial 
scales and provide understanding regarding how local 
circuits relate to larger neural networks ( Cardin  et  al., 
 2020;  Ren  &  Komiyama,  2021a). The limitations of indi-

vidual techniques can be mitigated by combining differ-
ent recording modalities ( Allegra  Mascaro  et  al.,  2015); 
for example, recent studies used wide- field calcium 
imaging with other imaging methods, such as two- photon 
calcium imaging and fMRI ( Barson  et  al.,  2020;  Lake 
 et al.,  2020). In order to rigorously map the complexity of 
meso- scale architecture, as well as its relation to (cross- 
scale) connectivity ( Axer  &  Amunts,  2022), it is now pos-
sible to image molecularly defined cell types in the same 
(full) human brain section as cellular architecture 
( Kooijmans  et al.,  2020). Such an approach allows for a 
better understanding of how different cell types connect, 
at a local, as well as at a global level.

In parallel, a recent trend has been to focus on the 
geometry and dynamics of neural populations ( Ebitz  & 
 Hayden,  2021;  Saxena  &  Cunningham,  2019). One hypoth-
esis motivating this approach is that (the most meaningful) 
neural activity takes place in low- dimensional state spaces 
or manifolds that capture a significant fraction of neural 
variability, and which can be identified by using dimen-
sionality reduction techniques on high- dimensional neural 
recordings. Studying the geometry and dynamics of low- 
dimensional state spaces is suggesting novel mechanistic 
hypotheses about how the brain controls movements 
( Churchland  et al.,  2012) and how it supports perceptual 
and cognitive tasks ( Chung  &  Abbott,  2021).

In order to connect the different scales and understand 
the rules of transition from one scale to the next, detailed 
models linking these spatial and temporal scales are nec-
essary. In addition, biophysical models are needed that 
describe how physiological processes are captured by the 
measurement devices. For example, such models can be 
used to combine invasive electrophysiology that probes 
multi- unit activity and local field potentials of a neuronal 
population across cortical depths with high- resolution 
laminar fMRI ( Havlicek  et al.,  2015): consisting of a micro-
circuit model including layer- specific distribution of excit-
atory and inhibitory neuronal subpopulations describing 
electrophysiology, which then provides the input to the 
fMRI signal model, and generative models of the fMRI sig-
nal consisting of models of neurovascular coupling, hae-
modynamic response, and physics of the BOLD signal.

The increasing understanding of this complexity in 
brain organisation went hand in hand with the rise of 
computational conceptualisation of mental phenomena 
and the success of artificial neural networks.  Marr  (1982) 
recognised that, in addition to the level of neural imple-
mentation, there are two further levels of organisation: 
the algorithmic and the computational levels. The need to 
involve computational neuroscience has grown in parallel 
with computational capabilities, which have expanded in 
the 21st century to the point where computational neuro-
science has become an essential companion of both 
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experimental and clinical studies. Apart from the modelling 
of concrete processes or computations, we can now con-
sider more ambitious, larger, and integrative models. These 
models will inevitably shed light on the brain’s cognitive 
architecture and contribute to the development of more 
general artificial intelligence. Brain theories integrate the 
computational models within conceptual frameworks and 
formulate principles of their functioning grounded in infor-
mation theoretical frameworks such as the Free Energy 
Principle ( Friston  et al.,  2006;  Parr  et al.,  2022) or dynami-
cal systems theory such as Structured Flows on Manifolds 
( Jirsa  &  Sheheitli,  2022). In addition to modelling biological 
information processing, computational approaches enable 
large and complex data sets to be analysed efficiently, 
supported by the artificial neural networks, theory, model-
ling, and simulation, allowing the linking of brain structure 
and function. Simulation at cellular- molecular- level and/or 
in system models can facilitate the testing of specific 
hypotheses or prediction of properties of brain structures, 
dynamics, and even behaviour, while integrating findings 
from different researchers and obtained with various tech-
niques. The integration of all experimental findings (mod-
els, texts, images, and other data) into a unified knowledge 
framework is still necessary. This, in turn, is critical for 
translating findings from neuroscience into digital medi-
cine, for proposing new strategies of intervention and for 
empowering neuro- inspired technologies that take advan-
tage of a growing body of insights into perception, plas-
ticity, learning, and memory.

Current state- of- the- art technologies to study pro-
cesses across the entire spatio- temporal spectrum are 
typically tailored to a specific species, genus, family, order, 
class, or phylum. Methods developed at different branches 
of the phylogenetic tree (e.g., invertebrates) are only slowly 
being adapted for usage at other levels, for example, 
rodents and primates. Recently, an annotated atlas of all 
cells and cell types has been released for Drosophila ( Li 
 et al.,  2020), and genetic specification of circuit changes 
has been studied that results in functional changes at the 
macro level ( Handler  et al.,  2019). This information may be 
important for understanding how macro- level state transi-
tions may relate to individual differences in connectivity 
strengths ( Taylor  et al.,  2022). Integrating this knowledge 
from model animals and translating it to humans by 
accounting for the effects of evolutionary diversification 
through statistical integration of phylogenetic knowledge 
(e.g.,  Felsenstein,  1985; for an early mention of the need 
for this approach) would allow researchers to bridge 
scales in the human brain noninvasively.

Other examples of successful research in inverte-
brates are the exquisite reversible perturbation tools to 
dissect the functioning of micro-  and macro- circuits (e.g., 
optogenetics, chemogenetics, pathway- selective pertur-

bations), which were first developed in algae and further 
refined in invertebrates. These tools have gone on to rev-
olutionise rodent research ( Kim  et al.,  2017) but have only 
recently begun to be integrated in primate studies ( Gerits 
 et  al.,  2012;  Han  et  al.,  2009;  Klink  et  al.,  2021). Other 
species like zebrafish are being selectively employed to 
understand genetic or ontogenetic mechanisms that 
cannot be properly tested in mammals, for example 
( Rastegar  &  Strähle,  2016). Targeted perturbations can 
also be introduced by CRISPR/Cas9 into induced plurip-
otent stem cell models of neurons or brain organoids.

Currently, neuroscience references phylogeny (evolu-
tionary history) when a trait is compared across two or 
more representative species. The identification of evolu-
tionarily convergent traits in two distantly related species 
can be used to triangulate evidence of associations 
between related features (e.g., a brain structure and its 
associated behavioural function). The identification of 
evolutionarily divergent traits that differ between closely 
related species is used to pinpoint the origin of species- 
specific specialisations (e.g., a brain feature found in 
humans but not in other primates). In recent decades, 
genomic sequences for diverse species have formed the 
basis for an explosion of phylogenetic information, and 
with this has arisen a whole new statistical toolset for 
comparing traits across different species, called phyloge-
netic comparative methods.

Phylogenetic comparative methods have risen with the 
availability of digital datasets and the possibilities of com-
parative neuroimaging ( Friedrich  et  al.,  2021). They will 
certainly provide new opportunities to computationally 
analyse the ever- growing body of comparative neurosci-
entific data. They can provide statistical tests for infer-
ences of homology; they can model how well a trait is 
conserved in evolution and they allow the convergence of 
traits to be examined quantitatively in a larger group of 
taxa. As more complex brain data become available in dig-
ital form and for more species, it will be possible to model 
the evolution of brain organisation, neural circuits, and cel-
lular biology, along with genomic, epigenetic, and tran-
scriptomic mechanisms. For example, structural brain 
connectomes have now been investigated in 125 mamma-
lian species in comparison to phylogenetic distances 
( Faskowitz  et al.,  2022). In addition, new possibilities are 
arising through studies of ancient DNA, which have so far 
been used to connect human- specific features of gene 
expression to neuroanatomy by investigating Neanderthal 
contributions to human DNA ( Gunz  et al.,  2019). Some of 
the alleles that are at present associated with human neu-
ropsychiatric disorders might have previously been linked 
to these adaptations that arose when Homo sapiens— and 
the groups we recently admixed with— adapted to differ-
ent environments around the world over time ( Benton 
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 et al.,  2021). As extant data and comparative fossil records 
about neuroanatomy, genomes, physiology, and behaviour 
continue to accumulate, new opportunities will continue to 
arise. Comparative data and evolutionary models could be 
used to develop AI by “reverse engineering” the minds of 
humans ( Sendhoff  et al.,  2009), as well as other species, 
by documenting the changes that occurred during their 
natural histories.

Besides this evolutionary approach, neuroscientists 
study various model species at the systems level to 
understand specific principals of brain structure and 
function, aside from classic primate and rodent models. 
While there is much reliance on mouse models to under-
stand the neurobiology of diseases and although mice 
are instrumental in tackling some diseases in humans, 
there are many human disorders for which they are not 
suitable models ( Brenowitz  &  Zakon,  2015). For example, 
mice are commonly used to understand aging, but aged 
mice lack many of the biological features characteristic of 
human aging and diseases. Some model organisms do 
age in ways that resemble humans. Notably, cats and 
dogs recapitulate many aspects of human aging, and 
exhibit brain atrophy and cognitive decline with age 
( Gunn- Moore  et al.,  2007;  Landsberg  et al.,  2012;  Youssef 
 et  al.,  2016). Neural pathologies in the brains of some 
cats and dogs share similarities with those observed in 
Alzheimer’s disease ( Head  et al.,  2000,  2005). Broaden-
ing the range of model systems used to understand 
human health and disease could help us address chal-
lenging problems in human medicine.

Although their brains are vastly different to those of 
mammals, avian models have become popular for investi-
gating the fundamentals of complex cognition. This 
includes functions like memorisation of spatial routes or 
hundreds of food caches, problem- solving, social altru-
ism, theory- of- mind, and multi- tasking ( Balakhonov  & 
 Rose,  2017;  Emery,  2006;  Güntürkün  &  Bugnyar,  2016). 
Birds have outstanding cognitive capabilities, and song-
birds possess a song system that is comparable to the 
human speech system. This means that birds are so far 
the only animal model for studying the development and 
processing of speech information in the brain, which has 
greatly stimulated research within the field of comparative 
neuroanatomy and pallial evolution ( Brainard  &  Doupe, 
 2002;  Brenowitz  et  al.,  1997;  Jarvis,  2004,  2019; 
 Nottebohm,  2005). Further, after more than 365 million 
years of separate evolution, birds have evolved a different 
pallial (neocortical) brain organisation compared to mam-
mals but show similar connectivity between relevant brain 
areas, neurochemical features, neuron numbers, and gene 
expression profiles of cells that are functionally related to 
cognition ( Colquitt  et al.,  2021;  Herold  et al.,  2011,  2014; 
 Kverková  et al.,  2022;  Shanahan  et al.,  2013;  Ströckens 

 et al.,  2022). Such comparisons can yield basic insights 
into the links between brain structure and function and 
offer the unprecedented chance of gaining deep concep-
tual insights into fundamental brain functions. These stud-
ies could potentially identify a core of identical neural 
mechanisms in the brains of birds and mammals that con-
stitute hard- to- replace components of advanced cognition 
( Stacho  et al.,  2020). Large- scale comparative research is 
key to understanding cognition and provides unique tools 
for deciphering the neuronal mechanisms underlying nor-
mal and pathological human brain functioning.

However, to what extent humans/primates evolved 
unique structural properties remains an open question. 
For example, the number and complexity of pyramidal 
cells, interneurons, and glial cells as well as specific brain 
network properties may vary between human and non- 
human mammals ( Benavides- Piccione  et al.,  2020;  Berg 
 et  al.,  2021;  Fang  et  al.,  2022). Those studies included 
only a small selection of mammalian species, and it is not 
foreseeable if these differences will persist when addi-
tional species and/or parameters are considered. Fur-
thermore, although previously thought to be unique to 
humans ( Balsters  et al.,  2010), the neocerebellum likely 
expands predictably in all primates ( Magielse  et al.,  2023). 
Methods have now been developed that allow us to 
examine human brain organisation and function at a level 
of detail close to what we can obtain with animal models 
( Eyal  et al.,  2018;  Montero- Crespo  et al.,  2020).

Although by far not comprehensive, this overview of 
modern neuroscience illustrates several important points: 
(1) Advances in neuroscience are not only the result of 
conceptual advances but are tightly linked to new meth-
ods and technologies; (2) New techniques allow a better 
understanding of the brain, but at the same time open the 
door to a new level of complexity and open up new ques-
tions; (3) There is an increasing need for integration of 
knowledge and collaboration across different domains, 
scales, species, and models.

3. INSTRUMENTATION

Many new tools are facilitating profound insights into the 
brain’s structure and function; further, researchers also 
have at their disposal new capabilities and considerable 
computational power to analyse data and simulate brain 
function. Such tools are provided by different platforms 
and consortia worldwide.

We here focus on EBRAINS: a dedicated distributed 
digital research infrastructure for neuroscience. EBRAINS4 
gives access to data, tools, methods, and theories that 
were previously fragmented and distributed between 

4 EBRAINS: https://ebrains . eu/

https://ebrains.eu/
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 different labs, in a joint, digital, open, interoperable plat-
form. It has been developed in the HBP and operates 
according to FAIR data principles ( Wilkinson  et al.,  2016). 
EBRAINS encompasses services for the sharing of neuro-
science data and models, the multi- level atlas of the 
human, atlases of rodent and non- human primate brains, 
simulation, brain- inspired technologies, medical data ana-
lytics, as well as dedicated tools for collaboration. In addi-
tion, it incorporates innovative neuromorphic computing 
and allows for the execution of experiments in virtual 
robots. Fenix5, an infrastructure coordinated by experts 
from leading European centres for high- performance 
computing, greatly facilitates research with high comput-
ing and storage demands. Through Fenix, neuroscientists 
can also collaborate with other research communities to 
jointly develop new software and solutions in the broader 
domains of data-  and computationally- intensive research. 
This is important because it creates synergies where dif-
ferent communities have similar questions (e.g., visualisa-
tion of large data sets, fast and interactive access to data), 
and it helps to use resources more efficiently.

The EBRAINS research infrastructure attracts a broad 
and very heterogeneous community of users, ranging from 
experienced application/service developers and senior 
neuroscientists to young researchers and students. Col-
laborative work and co- creation among stakeholders and 
users will be an essential part of the EBRAINS community 
and guide its development. The platform puts significant 
emphasis on the ease of use of its tools, and the interface 
complexity is balanced with user needs. This facilitates 
collaborative work, by combining tools to form computa-
tional workflows that seek solutions to diverse problems 
(e.g.,  Eriksson  et al.,  2022;  Fothergill  et al.,  2019;  Wagner 
 et  al.,  2022). In that sense, EBRAINS is changing the 
research paradigm scientists use to study the brain, both 
for large- scale neuroscience and for individual projects.

Computational workflows should be characterised by 
accessibility, shareability, automation, reproducibility, 
interoperability, portability, and openness. In this context, 
of particular importance is the use of the Knowledge 
Graph,6 which includes a multi- modal information repre-
sentation as well as the following “independence” fea-
tures of EBRAINS workflows:

 • Independence of tools and services from the work-
flows in which they are used. The inputs of tools 
and services are parameterised so that they may 
produce different outputs depending on other tools 
and services with which they are (re- )used in diverse 
workflows.

 • Independence of workflows from the underlying 
infrastructure in which they are executed: the Com-
mon Workflow Language (CWL)7 is being adopted 
for describing workflows in a common, standard 
fashion, offering transparent execution in infrastruc-
tures with different requirements, dependencies 
and configurations.

 • Independence of workflows from the underlying 
workflow management system. Several such sys-
tems are compatible with CWL for executing work-
flow steps, monitoring their execution, handling 
failures, automatically fetching logs and outputs 
and other relevant actions.

This provides a technological basis for a new approach 
to international, collaborative neuroscience and represents 
a large- scale interface for collaborative projects, for exam-
ple, organised in the International Brain Initiative (IBI)8 and 
the NIH BRAIN Initiative ( Litvina  et  al.,  2019). Along the 
same lines, the European EBRA consortium developed a 
Shared European Research Agenda to increase the impact 
of brain research, advance basic, translational, and clinical 
brain research, improve the lives of persons with brain dis-
orders, enable brain innovation, and address societal and 
economic challenges in Europe and globally9. Others have 
used the term Knowledge Representation (KR) to empha-
sise the need for a correct, robust, and verifiable represen-
tation of the vast neuroscience corpus ( Di  Maio,  2021).

To provide another example: recognising the impor-
tance of digital brain research and the potential benefits 
and value- driven impact for cognition, behaviour, and 
mental health, Malaysia has established the Malaysia Open 
Science Platform (MSOP)10 as an initiative to strengthen 
science, technology, and innovation in Malaysia itself as 
well as outside the country’s borders. Going beyond the 
brain, on an even broader scale, the Human Reference 
Atlas (Borner et al., 2021) and the European Commission’s 
Virtual Human Twin (VHT) initiative (driven by the EDITH 
coordination and support action; https://www . edith - csa 
. eu/) aim to develop the necessary infrastructure to facili-
tate the creation of integrated multiscale multi- organ twins 
of the whole human body. Such twins may benefit from the 
lessons learned and the tools developed in EBRAINS.

4. WHAT IS MISSING?

Deeper insights into brain function and dysfunction are 
not only now possible but are also urgently needed. 
 Neurological and psychiatric diseases create a significant 

7 https://www . commonwl . org/
8 International Brain Initiative: https://www . internationalbraininitiative . org/
9 https://www . ebra . eu / sebra/
10 https://www . akademisains . gov . my / mosp/

5 Fenix: https://fenix - ri . eu/
6 https://search . kg . ebrains . eu/

https://www.edith-csa.eu/
https://www.edith-csa.eu/
https://www.commonwl.org/
https://www.internationalbraininitiative.org/
https://www.ebra.eu/sebra/
https://www.akademisains.gov.my/mosp/
https://fenix-ri.eu/
https://search.kg.ebrains.eu/
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burden for those directly affected, carers, relatives, and 
society. Achieving progress in these areas is additionally 
motivated by philosophical questions of knowing and 
understanding our own nature, consciousness, and cogni-
tion. These different perspectives have to come together for 
a better understanding of the basis of brain health and the 
border between brain life and death. Ethical, philosophical, 
legal and regulatory, cultural and political challenges, which 
are intertwined, will need to be addressed concomitantly.

Progress in brain medicine is tightly linked to advances 
in basic research, but some fundamental questions 
remain open. To name a few examples, the formation of 
memories and the basis of conscious perception, the 
interplay of electrical and molecular- biochemical mecha-
nisms of signal transduction at synapses, the role of glial 
cells in signal transduction and metabolism, the role of 
different brain states in the life- long reorganisation of the 
synaptic structure, the relationship between dynamical 
and cognitive models, or the mechanism of how cell 
assemblies generate a concrete cognitive function are all 
important aspects that remain to be characterised. More-
over, the specific, dynamic consequences of variations in 
brain organisation, including cyto- , myelo- , chemoarchi-
tecture and interregional connectivity, are not yet well 
understood, but ultimately influence the local ratio of 
excitatory to inhibitory cell activity, resulting in a variable 
balance across different brain regions ( Barbero- Castillo 
 et  al.,  2021;  Deco  et  al.,  2018;  Demirtaş  et  al.,  2019; 
 Jancke  et al.,  2022;  Kringelbach  et al.,  2020).

Our current understanding of the mechanistic opera-
tions which subserve cognitive functions, such as memory 
or decision making, is limited by the scale and precision of 
existing technologies— simultaneous microscopic record-
ings are limited to a few brain regions, while full- brain imag-
ing lacks the spatial and/or temporal resolution needed. 
Computational models, which could help to fill this gap, are 
likewise at an impasse: mechanistic models of cognitive 
functions focus almost exclusively on microscopic scales 
( Amit  &  Brunel,  1997;  Mante  et  al.,  2013;  Wang,  2002), 
while full- brain models are largely oriented to replicating 
large- scale neural dynamics ( Breakspear,  2017;  Deco  et al., 
 2011). Novel modeling approaches must be developed to 
close this schism in the field, either by introducing simpli-
fied cognitive functionalities in large- scale brain models 
( Mejías  &  Wang,  2022), by extending cognitive models 
such as recurrent neural networks to multi- region fram e-
works ( Yang  &  Molano- Mazón,  2021), or by incr easing the 
biological plausibility of existing cognitive multi- region 
models ( Dora  et al.,  2021).

The need for interaction with the brain (both “reading” 
and stimulation/manipulation), originally driven by clinical 
requirements, has opened novel and expanding fields 
such as the assessment of awareness in disorders of con-

sciousness (e.g., unresponsive wakefulness syndrome, 
locked- in syndromes), brain- machine interfaces, cognitive 
enhancement, sensory restoration, and sense- expanding 
technologies, which have relevance beyond the medical 
sector for society at large. There is also a need for brain 
recordings of high temporal and spatial resolution and 
activity control that are at the same time minimally or non- 
invasive. These technological advances require interdisci-
plinary work from neuroscience and areas such as 
micro-  and nanoelectronics, optics, light- controlled drugs, 
nanorobotics, new materials (e.g., graphene), etc. It is to 
be anticipated that advances in security, biocompatibility, 
reactive changes in the brain (e.g., gliosis, cell death), 
signal- to- noise ratio, problems related to invasiveness 
(surgical, infections), and closed- loop control of brain 
function will be made soon; these advances will bring with 
them consequences in terms of legal and ethical issues.

While progress in these fields has been impressive, a 
comprehensive understanding of underlying processes 
requires an integration of each system (e.g., visual, sen-
sorimotor) with the rest of the brain, with the body, and 
with the environment. Furthermore, it requires integration 
of molecular, subcellular, cellular, and systems levels, to 
reach a “multiscale” understanding that incorporates the 
emergent properties of all these complex relationships. 
These levels cannot be fully understood by considering 
only parts of the system. Each level, when it malfunc-
tions, may result in a large variety of neurological and 
neuropsychiatric diseases. In order to understand the 
process holistically, one needs to understand all the indi-
vidual steps, which is today in many cases difficult or 
impossible. It is necessary to approach the individual 
steps at the relevant level of abstraction and to develop a 
theory, and, in addition, to have access to the relevant 
data at the different levels of brain organisation through a 
multi- level structural and functional atlas.

The newest computational bottom- up models are now 
able to integrate microscopic features, such as those of 
specific ion channels, synaptic receptors, and neuromodu-
lators, and evaluate their impact at the level of cellular sub-
populations. Recently, this approach was even extended 
to the whole- brain level, by studying the effect of molecular 
targets of anaesthetics, such as propofol, and their impact 
at the level of large- scale activity. For example, changing 
K+ conductance ( Dalla  Porta  et al.,  2023), or the kinetics of 
inhibitory (GABA- A) synaptic receptors, can induce a 
switch of brain activity to synchronised slow- waves, similar 
to the effect of anaesthetics11. This is an example of an 
area where computational models can contribute.

11 work in progress in showcase 3 of the HBP: https://www . humanbrainproject 
. eu / en / follow - hbp / news / 2022 / 06 / 20 / how - ebrains - used - investigate - disorders 
- consciousness/

https://www.humanbrainproject.eu/en/follow-hbp/news/2022/06/20/how-ebrains-used-investigate-disorders-consciousness/
https://www.humanbrainproject.eu/en/follow-hbp/news/2022/06/20/how-ebrains-used-investigate-disorders-consciousness/
https://www.humanbrainproject.eu/en/follow-hbp/news/2022/06/20/how-ebrains-used-investigate-disorders-consciousness/
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A full causal understanding of how behaviour and cog-
nition are produced through cortical computation requires 
the combination of both bottom- up and top- down 
approaches. The paradigmatic example is the ventral 
visual stream. While deep neural networks for object rec-
ognition have been inspired by the architecture of the 
visual system, these networks also provide an improved 
functional model of the visual system itself. In fact, the 
statistical properties of model neurons in the deep net-
works are closest to those of real neurons recorded in the 
brain ( Yamins  &  DiCarlo,  2016;  Zhuang  et  al.,  2021). It 
remains a challenge to reproduce this functionality of the 
top- down models with more detailed bottom- up models.

This type of interplay between experimental measure-
ments and modelling predictions is very powerful and 
has led to impressive advances in understanding 
network- level phenomena such as oscillations, waves 
( Breakspear,  2017;  Marder  et al.,  2022;  Tort- Colet  et al., 
 2021). The extension of such an approach to the level  
of the whole brain, however, is more challenging because 
of the high level of complexity involved, as well as the 
still- insufficient temporal and spatial resolution of non- 
invasive human imaging and recording techniques. 
Linking these models with imaging requires a deep bio-
physical understanding of the different signals involved. 
This is particularly relevant when computational models 
are used to quantitatively predict cognitive function and 
aging (  Charvet,  2021;  Charvet  et al.,  2022;  Heckner  et al., 

 2023;  Jonsson  et al.,  2019), for example, based on imag-
ing data of patients and healthy subjects and for building 
precise loops between computational models and clini-
cal data, which should ultimately lead to a better under-
standing of neurological diseases.

Network and other models are also tools to investigate 
how physiological mechanisms can be perverted in 
pathological conditions, for example, where microscopic 
changes down to modifications at the protein level can 
lead to aberrant behaviour or clinical symptoms ( Mäki-  
Marttunen  et al.,  2019). Among the best understood cases 
are epilepsy disorders, where several microscopic targets 
have been identified, leading to abnormally high excitabil-
ity. Another example comes from a multifactorial causal 
model that included neurotransmitter receptor data and 
enabled the prediction of variance in the clinical severity 
of Alzheimer’s disease symptoms, thus further supporting 
the value of creating personalised brain models, as well as 
the importance of their enrichment with data arising from 
multiple modalities ( Khan  et al.,  2022). In contrast, the tis-
sue pathologies and brain signals of many other patholo-
gies such as schizophrenia are not well understood, and 
computational models may have an important role in 
identifying mechanisms and also in predicting potentially 
informative macroscopic and/or behavioural features. To 
answer these and other research questions, a number of 
technological, methodical, and computational challenges 
has to be adressed (Box 1).

BOX 1. TECHNOLOGICAL, METHODICAL, AND COMPUTATIONAL CHALLENGES.

Brain research poses enormous technological and computational challenges for brain interfacing, analysis, and 
mechanistic understanding, data interpretation, and modelling of brain processing. To cite but some examples:

 •  The complexity of data (multi- level brain organization, hierarchies, parallel information processing, redun-
dancy, electrochemical processing, etc.). A key aspect of this complexity is the relationship between dif-
ferent scales that speaks to the level of granularity (and accompanying data) that is most apt for elucidating 
these relationships. One approach from physics is the notion of “renormalisation”; namely, the conserva-
tion of laws from one scale to the next (sparse coupling, hierarchical dynamics, computational principles, 
etc.). In addition, measurements at all relevant scales are required to obtain information on how low- level 
states combine to generate states at higher levels, and to account for neurodegeneracy, that is, the pro-
pensity for different system configurations to support the same or similar functions.

 •  The multitude of data formats and data models arising from the use of diverse hardware, software, and analyt-
ical approaches. Data sourced from various researchers and laboratories often display disparities, creating 
hurdles for integration and interoperability. Promoting the adoption of standards and harmonisation proce-
dures, including the utilisation of standardised brain atlases for spatial referencing, is essential. These measures 
play a pivotal role in facilitating data reuse and the combination and utilisation of data across different contexts.

 •  Brain data derived from human subjects can undergo de- identification but may not achieve anonymisation 
(rendered impossible to trace back to the individual). Consequently, there is a demand for secure data 
storage services that offer controlled or restricted access to facilitate data reuse. In these protected stor-
age systems, making data discoverable involves openly sharing anonymous metadata, a practice currently 
employed by EBRAINS.
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5. ETHICAL AND SOCIETAL QUESTIONS AS 
DRIVERS OF RESPONSIBLE DIGITAL BRAIN 
RESEARCH

Digital brain research should be driven by scientific curi-
osity and a desire to promote society’s best interests; fur-
ther, it should reflect societal priorities, including a better 
understanding of the brain, the development of better 
diagnostic tools, and more effective treatment of brain 
diseases. In this section, we briefly suggest how we can 
ensure that societal concerns are addressed and reflected 
in the research and its outcomes and describe approaches 
for guaranteeing that research and innovation processes 
are carried out responsibly. Future research programmes 
must integrate anticipatory practices, neuroethical ref-
lection, multi- stakeholder and citizen engagement and 
support ongoing compliance with current legislation, reg-
ulation, and good research practice. This includes careful 
consideration of the role of gender and diversity in data 

generation and governance of research, attention to 
potential dual- use research of concern or misuse of neu-
roscientific findings, as well as reflection on the ethical 
sustainability of the research, its impact on human rights, 
and its long- term societal and political implications. Addi-
tional social and legal issues to be considered in relation 
to digital brain research include those raised by data  
protection and the European Commission’s General  
Data Protection Regulation- compliant data governance 
(GDPR), social desirability, acceptability, and sustainabil-
ity of digital brain models and issues raised by the 
 possibility of advanced artificial cognition, brain- inspired 
computing, and neurorobotics research, among others. 
In one example, the intersection of neuroscience and 
technology is likely to lead to new approaches to AI. In 
digital brain research, the emphasis should not only be 
on amassing vast amounts of data but also on ensuring a 
diverse representation, encompassing factors such as 

 •  Many behaviours and some mechanisms are unique to humans, but a large proportion of data is not 
directly accessible and remains unknown (e.g., chemical reaction kinetics at the cellular level cannot be 
measured in the living human brain). Comparative approaches studying animal brains as well as modelling 
and simulation are strategies to overcome this problem.

 •  Intersubject variability and diversity. It is necessary to integrate information from diverse human popula-
tions for personalised medicine into atlases, databases, and research.

 •  The specific spatial and temporal resolution of data sets, given the multiscale nature of brain spatial and 
temporal activity. Scale integration is challenging (from micro-  and nanometre scales, through meso-  to 
macroscale) as is the capture of brain dynamics. This requires representation of different scales in a com-
mon framework according to the topography of the findings, that is, in multi- level and multiscale atlases 
and models that account for the temporal domain.

 •  The large size of “subsystems” (e.g., large molecules such as neurotransmitter receptors with many atoms 
and complex, dynamic structures, large networks, whole- brain perspective as compared to regions of 
interest, large cohorts).

 •  The wide spectrum of response patterns, dynamics, plasticity, and behaviour of the system in pathological 
conditions.

 •  The changing nature of the system, which manifests plasticity at different spatial scales (from dendritic 
spines to large networks; processes such as spike adaptation, long- term potentiation, long- term depres-
sion) or neurodegeneration after lesions.

 •  The accuracy and reliability of predictions and analyses, applicable to individual subjects, which is partic-
ularly critical for translating applications into brain medicine.

 •  The lack of a comprehensive brain theory, or a selection of competing theories.
 •  The lack of integrability and documentation of extensive brain collections using modern experimental 

approaches, including those over 100 years old in Europe and worldwide, to make better use of historical 
brain preparations and data. These number in the many tens and hundreds of thousands of specimens and, 
for the most part, are not yet digitised and/or available via web- based tools. Some of them include rare 
species or brains obtained under conditions that cannot be reproduced any more (e.g., untreated patients 
with brain disorders). Making this digitally accessible for researchers worldwide would be of significant 
benefit to evolutionary, comparative, and also clinical research; however, this aspiration is linked to signifi-
cant challenges in data exchange, storage, and security. First attempts are underway to combine post- 
mortem brain dissections with in vivo imaging in a digital framework, for example, https://bradipho . eu/.

https://bradipho.eu/
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sex, age, and ethnicity. This inclusivity extends to 
researchers, practitioners, and stakeholders involved. By 
embracing diversity, the field can effectively address 
issues related to biases in AI and proactively engage with 
emerging concerns arising from innovative approaches, 
technologies, and applications.

The framework of Responsible Research and Innova-
tion (RRI) defines a multidisciplinary approach to tackling 
the ethical, philosophical, societal, and regulatory chal-
lenges that accompany the vision of future digital brain 
research. Furthermore, RRI- inspired research and prac-
tices can be useful in building a future where responsible 
digital brain research is proactive in its recognition of 
existing and emerging societal and ethical challenges.

Digital brain models are a key concept and model for 
future brain research. They raise significant philosophical 
questions (e.g., what are the limits of access of brain– 
machine interfaces to other brains?) ( Evers  &  Sigman, 
 2013) and ethical and social issues (e.g., are there poten-
tially problematic applications of the technology? Who is 
involved in the analysis and decisions on potential applica-
tions? How would we like to use such models in society?) 
( Evers  &  Salles,  2021). Conceptual clarity is a prerequisite 
for informed debates on the ethical issues raised by digital 
brain research. Approaching such questions through the 
framework of RRI includes reflection on the meaning and 
adequacy of the concepts involved, engagement and  
dialogue between different disciplines in neuroscience 
research, including philosophers, ethicists, and social sci-
entists with societal stakeholders like policymakers, inter-
est organisations, and the public (see Box 2).

6. GLOBALISATION OF BRAIN RESEARCH

The proliferation of digital technologies in brain research 
has expanded since the dawn of the 21st century and ana-
lysing multi- modal data from many thousands of brains, 
made openly available through public repositories (e.g., 
UK Biobank) or global networks (e.g., ENIGMA, HCP), is 
possible. Of course, access to dizzying amounts of data 
means nothing without the means to convert these data 
into knowledge and, ultimately, into a better understand-
ing of the brain’s complex machinery in normal behaviour, 
in development or aging, and in brain disease. Accord-
ingly, we have seen the rise of complex generative mod-
els that track the spatiotemporal progression of brain 
states ( Iturria- Medina  et  al.,  2018;  Vogel  et  al.,  2021; 
 Young  et al.,  2018) by combining genetic and phenotypic 
information across multiple time points. AI strategies are 
playing an increasingly important role in classifying mas-
sive cohort data into rationally defined sub- groups that 
may be amenable to customised interpretation, for exam-
ple, polygenic risk scores of behavioural predisposition or 
stratification of pharmaceutical clinical trials. Finally, such 
approaches offer the potential for personalised manage-
ment or medical intervention.

However, the search for ever more subtle and early bio-
markers of incipient changes in brain state often demands 
ever larger aggregates of data to tease out the factors that 
are associated with, or perhaps cause, those changes. 
This search brings with it the perennial conflict of homo-
geneity versus representation. While there is little doubt 
that “big data” approaches applied to large public data 

BOX 2. ETHICAL QUESTIONS.

Acknowledgement of ethical questions that arise as a consequence of digital brain research, especially by  
digital twins.

 •  Privacy. Digital twins are constantly updated with real- world data. These data can be identifying, particu-
larly when imaging, genetic, and clinical data are combined. Even “siloed” sources of information, in great 
enough quantity, can prove identifying, especially in cases of rare diseases. Increasingly, it appears that 
promising de- identification may not be possible in the face of big data ( Choudhury  et al.,  2014). It is crucial 
that individuals be informed of privacy considerations during the consent process and that they under-
stand that the identification risk may increase over time ( White  et al.,  2022). As a community, and in collab-
oration with governing agencies, policies will need to be established regarding these aspects in the future.

 •  “Mind- reading”. Concerns about privacy are amplified given that much of digital brain research investi-
gates emotion, perception, memory, and mental states: realms that are often considered sacrosanct 
aspects of inner life. Already, brain imaging (alongside various physiological measurements) has been 
shown to be predictive of behaviour at the population level ( Bell  et al.,  2019;  Talozzi  et al.,  2023). Digital 
brain models have the potential to be even more powerful: for instance, they may suggest how to enhance 
particular brain states, in addition to merely classifying them ( Ligthart  et al.,  2021) .

 •  Malfeasance. It is increasingly recognised that digital brain research can be “dual use”. It may equally 
cause harm and bring benefits.



15

K. Amunts, M. Axer, S. Banerjee et al. Imaging Neuroscience, Volume 2, 2024

repositories, for example, ADNI, PPMI, UK Biobank, etc., 
have provided us with hitherto unmatched insight into the 
general nature of the human brain’s mechanisms and cir-
cuits, such cohorts are largely drawn from Western coun-
tries and are not representative of the global population.

The effectiveness of data repositories requires suffi-
ciently rich and diverse data to ensure that outcomes of 
research and the innovations informed by these out-
comes can be generalisable to diverse populations and 
contexts globally. Sex differences, age, socioeconomic 
status, ethnicity, and other factors contribute to individ-
ual differences in neural structure, function, and cognitive 
performance ( Dotson  &  Duarte,  2020) as well as differ-
ences in disease prevalence, recovery, and survival rates 
between demographic groups ( Sterling  et  al.,  2022; 
 Zahodne  et al.,  2015). Moreover, differences worldwide 
exist regarding the reporting of racial demographic infor-
mation in studies ( Goldfarb  &  Brown,  2022). At the same 
time, initiatives in Low-  and Middle- Income Countries 
(LMICs) have steadily grown for the diagnosis and preva-
lence of brain disorders and mental health issues, for 
example, the ASEAN region. There is a need for global 
collaboration, including the collection, dissemination, 
and analysis of well curated, deeply phenotyped, and 
genotyped datasets from LMICs to identify similarities 
and differences among different global sub- populations. 
It is not possible to obtain statistically reliable inference 
about such comparisons without access to nationally 
representative cohorts from different countries, a require-
ment beyond the reach of individual laboratories. As the 
repeated use of existing datasets leads to their inevitable 
decay ( Thompson  et al.,  2020), the problem of represen-
tation cannot be addressed merely as an afterthought but 
requires urgent prioritisation.

In the coming decade, as open data- sharing initiatives 
(UK Biobank, OpenNeuro, CONP, EBRAINS, etc.) expand 
globally, scientists' evolving views on data management 
and sharing ( Donaldson  &  Koepke,  2022), along with 
shifting expectations from funders and journals (see, e.g., 
Editorial in Nature Neuroscience ( “How  we  promote  data 
 sharing,”  2023)), will likely result in a significantly 
increased availability of diverse data for the global com-
munity. This will bring a new level of awareness of the 
associated and causal factors that give rise to brain and 
behavioural differences among global populations. Such 
data- sharing platforms, many of which have now been in 
existence for over a decade, have reached a level of 
technical advancement such that they already support 
open data- sharing across many countries.

However, there is work to be done in developing a 
clear and seamless interoperability across diverse plat-
forms, ensuring that end- users can engage without delv-
ing into intricate technical underpinnings. The challenge 

is not merely about providing “data”; the emphasis lies 
on delivering data that are both valuable and interpreta-
ble, complete with provenance that adheres to FAIR 
data- sharing principles ( Wilkinson  et  al.,  2016). Techni-
cally, achieving data interoperability, providing data 
descriptors and protocols, and adhering to metadata 
standards not only enhance the value and usefulness of 
the data but also contribute to building a stronger, collab-
orative, and more efficient research ecosystem. However, 
the imperative for access to meaningful and actionable 
data also introduces a myriad of challenges related to 
data governance and ethics. These practices are still 
evolving across different constituencies, with diverse and 
sometimes incompatible frameworks globally ( Eke  et al., 
 2022). Differences also exist regarding the reporting of 
racial demographic information in studies ( Goldfarb  & 
 Brown,  2022), and the technical capacity to generate and 
process data, funding for data collection, and other 
socio- cultural factors. So far, datasets from regions in 
Africa and Latin America are often not part of global brain 
research and innovation discourse.

The next decade will see a pressure to harmonise the 
different data governance and ethics frameworks in 
Europe (e.g., GDPR), North America, Asia, Australia, and 
Africa, to foster the wider dissemination of brain data 
within an Open Neuroscience global community. More 
attention should be paid to capacity building, increased 
reporting of demographic information, funding programs, 
and finally awareness campaigns focused on data gener-
ation, processing, and sharing in low-  and middle- income 
countries.

Arguably the most important aspect of the globalisa-
tion of brain research will be the “democratisation” of 
brain research. Rather than being simply sources of 
cohort data that are analysed and published by scientists 
in High- Income Countries, we anticipate a growing pres-
ence of LMIC scientists in the brain research enterprise. 
This democratisation is a natural evolution from the 
increasing access to advanced analytic workflows that 
are available through current data analytic portals (e.g., 
CBRAIN (https://cbrain . ca/), EBRAINS (https://ebrains 
. eu/), BrainLife (https://brainlife . io/). Such portals allow 
researchers anywhere in the world to run complex analy-
ses on large datasets that are resident elsewhere and 
remove the logistical, administrative, and technical barri-
ers that have hindered LMIC scientists from participating 
fully in the brain research community. Further, the redistri-
bution of derived data becomes possible by combining 
data sharing and analysis platforms. The sharing of 
results is essential to minimise scientific redundancy, 
maximise reproducibility, and foster accessibility of sci-
entific analyses to LMIC environments. With growing 
awareness of the role, that analytic decisions play in 

https://cbrain.ca/
https://ebrains.eu/
https://ebrains.eu/
https://brainlife.io/
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learned models of the brain ( Botvinik- Nezer  et al.,  2020), 
the dissemination of derived data allows for both iterative 
and collaborative approaches to scientific exploration 
and removes key barriers to entry. Such a vision also 
brings with it a host of administrative factors to be worked 
through, for example, academic recognition, promotion, 
mentorship, etc., but these issues are already topics 
within the current Open Neuroscience debate. Adding a 
globalisation component introduces scaling and logisti-
cal challenges, for example, language, local governance 
regulations, but does not change the fundamental issue, 
which is the tension between data privacy and open sci-
ence. We anticipate that, as the technical challenges are 
resolved, the vision of global neuroscience integration 
will become a reality over the next 10 years.

7. BRAIN MODELS AS ENABLERS  
OF FUTURE BRAIN RESEARCH

The accelerated development of information and commu-
nication technologies in the past two decades has not 
only supported the development of simulation and 
machine- learning technologies but has also made data 
and models interoperable within a common ecosystem 
leading to novel types of brain models. Directly tapping 
into the results stemming from basic research on the 
brain, brain simulation is expected to play a key role in 
elucidating essential aspects of brain processes (by 
demonstrating the capacity to reproduce them in silico), 
such as decision- making, sensorimotor integration, mem-
ory formation, etc. While mindful of some of the ethical 
and philosophical issues they raise, one may also envi-
sion the potential use of such models and simulations to 
address specific questions in brain research. From there, 
it is easy to envision how generic brain models can be 
customised to capture some of the distinct features of a 
given patient’s brain. For example, an individual’s struc-
tural and functional brain imaging data may constrain a 
generic digital brain model and render it subject- specific, 
thus enabling its use as a personalised analysis template 
or in silico simulation platform.

A concrete instance of such an approach is the Vir-
tual Epileptic Patient, wherein neuroimaging data inform 
in silico simulations of an epileptic patient’s brain to 
support diagnostic and therapeutic interventions, clini-
cal decision- making, and prediction of consequences 
( El  Houssaini  et al.,  2020;  Jirsa  et al.,  2017;  Wendling, 
 2008). With the overall trend in computational neurosci-
ence, various models of epileptic activity are being built 
based on knowledge regarding the relevant underlying 
neural circuits. The models often explain the network- 
level observation of epileptic seizures as an emergent 
hyper- synchronous/high amplitude rhythmic state of 

network of neurons or neural population. Multi- level 
atlas data represent another data source that can fur-
ther inform personalised brain models in instances 
where data cannot be directly obtained from that sub-
ject ( Amunts  et al.,  2022).

Such personalised “virtual brains” can be seen as a 
stepping- stone towards something even more theoreti-
cally and technically, and possibly ethically challenging, 
but also better adapted to the ever- changing nature of 
brain activity across all time scales. The logical culmination 
of personalised brain simulation can be seen in a model 
that is continuously informed and updated by real- world 
data, a type of model referred to as a “digital twin”. The 
concept of the “digital twin” in this context needs to be 
carefully defined to avoid obscuring the limitations of the 
approach and to avoid creating unrealistic expectations of 
exact fidelity or even counterproductive hype ( Evers  & 
 Salles,  2021). Historically, the concept of the digital twin 
originated in the realm of industry and manufacturing 
( Grieves  &  Vickers,  2017;   Grieves,  2019), and comprises 
three components: the physical object, its virtual counter-
part, and the data flow back and forth between the two. 
Empirical data measured for the physical object are passed 
to the model, and information and processes from the 
model are passed to the physical object. Today, the term 
“digital twin” is widely used beyond its origins in the indus-
trial domain and is now applied in many areas of research, 
including in biological and medical fields, although the 
concepts behind this term may differ.

In manufacturing, the digital twin is more than a general 
simulation model. It is the specific instance of the general 
model for an individual object fed with empirical data from 
that specific object, for example, an airplane engine in the 
industrial domain ( Tao  et  al.,  2019). Recently and in the 
same context, “digital shadows” have been proposed as 
an improved approach to provide task-  and context- 
dependent, purpose- driven, aggregated, and persistent 
datasets that can encompass different complex realities 
from multiple perspectives in a more versatile fashion and 
with better performance than a fully integrated digital twin 
( Becker  et al.,  2021;  Brauner  et al.,  2022).

One reading of a digital twin speaks to the dialectic 
between machine learning and generative modelling in 
AI. Generative models underwrite interpretability and 
explainability. Furthermore, they enable the move from 
“big data” to “smart data” (or more precisely selecting 
and integrating data features to maximise expected infor-
mation gain). A generative model is a probabilistic speci-
fication of the mapping from (latent) causes to 
(measurable) consequences. In this sense, a digital twin 
can be taken as a formal specification of a model that is 
apt for generating the responses of a cell, subject or 
cohort in question. Crucially, getting the generative model 
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right affords an interpretable and mechanistic account of 
empirical data. Coincidentally, it casts the distinction 
between bottom- up and top- down modelling in terms of 
model fitting (i.e., inversion) and model selection (i.e., 
hypothesis), respectively.

In constructing a “digital twin” of a living organ, one is 
confronted by important challenges over and above those 
encountered when constructing the digital twin of an inan-
imate object. The brain is by far the most complex and 
multi- facetted organ. To what extent, then, can the digital 
twin concept be applied to neuroscience and the brain? 
The term digital twin, if applied 1:1 to the brain, could trig-
ger major misunderstandings. Here, we want to contrib-
ute to the discussion by clearly defining the term in the 
specific context of brain science. We distinguish purpose- 
driven digital twins from the abstract idea of a full digital 
replica (or duplicate/copy) of the brain, the latter being the 
complete representation of all aspects of the brain at all 
levels (see Box 3). A full replica of the brain is neither 
achievable nor does it seem of clear practical use. When 
we speak of digital twins in what follows, we mean 
purpose- driven digital models generated for specific 
questions, unless explicitly indicated otherwise. The digi-
tal twin as discussed here should be understood as a vir-
tual model designed to adequately represent an object or 
process that is constrained by data from its physical 
counterpart and that provides simulation data to guide 
choices and anticipate their consequences. The digital 
twin is thus a copy in the practical sense, usually associ-
ated with a model of a function or process, and its power 
lies in its usefulness in dealing with relevant problems 
faced by its physical counterpart at an appropriate level of 
abstraction. The aim is thus not to resemble the biological 
brain in as much detail and on as many levels as possible 
but rather to selectively reduce the amount of information 

to those data that have proven predictive for a specific 
(research) question— keeping the model as simple as 
possible but ensuring it is as complex as necessary.

Even for a specialised model that aims to understand 
specific aspects of brain structure and dynamics or pre-
dict the progression of disease in a specific patient, one 
still needs a comprehensive source of data to draw from in 
order to generate sufficiently information- rich, complex 
Virtual Brain models. Such curated data systems have 
been created, for example, in the form of the Human Brain 
Project’s high- resolution multi- level human brain atlas on 
EBRAINS. These serve as an interface for integration of 
structural and functional data modalities. With each 
model, it must be demonstrated whether more data makes 
the model more powerful or not, that is, do the added data 
enable more accurate, testable predictions? There needs 
to be a continuous, question- related monitoring of the 
trade- off between the inclusion of more parameters or 
measurements for better predictions and the feasibility 
and associated costs of collecting these data. This also 
serves as an ongoing loop for testing whether the data 
selection is suitable for the question at hand, that is, 
whether it reflects the major determining factors (Box 3).

An important distinction between the digital twin and 
other personalised virtual brain models is that the digital 
twin constantly receives new information from the real 
world to immediately adjust to its environment. In a neu-
roscience context, a “digital twin” of a brain in the above 
sense holds much promise as an approach for continu-
ously adapting interventions in functional neurorehabilita-
tion or for tailoring neurotechnology- based interventions. 
Applications making use of a high- fidelity digital twin of a 
human brain updated in quasi- real time will require tech-
nical developments (e.g., ecological immersion of that 
twin brain in simulated environments, high- bandwidth, 

BOX 3. CATEGORIES OF DIGITAL BRAIN MODELS.

 •  Brain models
Brain models are digital representations of the brain. The term is used in different contexts; common exam-
ples include digital atlases, artificial neural networks, anatomical models, biophysical models, network 
models, cognitive and behavioural models, and mathematical and data- driven models.

 •  Personalised brain models
Personalised brain models are special types of models that are personalised by integrating specific data 
of one individual into a more general model (e.g., as enabled by the Virtual Epileptic Patient).

 •  Digital twins
Next- generation personalised brain models that continuously evolve by being informed with real- world 
data. They are designed in a purpose- driven way, integrating data relevant for a specific research question.

 •  Full replica
The idea of a complete digital representation of all aspects of a brain at all levels (hypothetical concept), 
eventually including the interpretation with the digital twin body
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stable brain- machine interfaces, very high computational 
power), in areas where breakthroughs have yet to be 
made; as such, they remain a long- term objective for a 
rather distant future. This is not to say, however, that dig-
ital twins cannot already be applied in neuroscience and 
medicine today, provided they adequately address the 
intrinsic limitations of current brain models, of available 
personalisation processes and those faced by current 
technologies in updating them at the required frequency. 
The twin thus defines the current horizon of our digital 
neuroscience roadmap and must be appropriately taken 
into account as a driver for future developments.

While the use of digital twins of the brain in concrete 
applications may still seem some way off, the era of digi-
tal brain research has, without question, already started, 
both in real world settings and research alike. Digital 
brain research is an umbrella concept under which data, 
models, theory, methods, and computational technology 
are integrated for all research and development efforts 
undertaken in the framework of the HBP. Its value rests 
upon a successful demonstration of internal and external 
validity (features of experimental results) as well as eco-
logical and construct validity (features of interpretative 
claims). It enables researchers to address some of the 
major challenges that have hindered progress in neuro-
science for decades. These challenges include our 
understanding of intra-  and inter- subject variability, non- 
identifiability of mechanisms, and multiscale complexity. 
EBRAINS provides an infrastructure and user interfaces 
to allow interoperation of the required components of 
data, models, and methods; in doing so, it de facto 
establishes the operational basis for the concept of the 
digital brain to take centre stage in neuroscience research.

We propose that there are three areas where digital 
brain models of all kinds (see Box 3) could be fruitfully 
applied in the short- to- medium term: (1) basic brain 
research, (2) applications in medicine, and (3) brain- 
derived technologies.

7.1. Basic brain research

Digital brain models and their simulation will not replace 
basic research and knowledge accumulation but can be 
rather thought of as a useful “engineering” tool that func-
tions currently as an in- progress predictive model with a 
dual purpose: (1) putting current knowledge to the test, 
and (2) anticipating the effect of interventions. The latter 
can be appealing as the number of interventional meth-
ods is expanding (deep brain stimulation (DBS), transcra-
nial magnetic stimulation (TMS), transcranial direct 
current stimulation (tDCS), transcranial focused ultra-
sound stimulation (tFUS), drugs, optogenetics, and pho-
topharmacology). Although there are already various 

studies where computational brain models make predic-
tions, drive the design of and explain effects observed in 
interventional research ( Frank  et al.,  2004,  2007), these 
methods are currently often applied “semi- empirically” 
with the available information about electrode location; 
circuit connectivity, function, and electrical models; 
genetic promoters of neuronal types; expression patterns 
of neuroreceptors and their signalling pathway models, 
etc. The digital twin may allow rational decision- making 
regarding these parameters, the testing of outcomes, fol-
lowed by re- evaluation of the model and so forth.

In order to be successful, underlying models must be 
biologically realistic, that is, anatomically adequate and 
functionally comprehensive. Ultimately, they should be 
capable of linking brain structure and function with 
behaviour and allow the study of cognition, language, 
consciousness, or emotions. This requires the integration 
of highly heterogeneous data across scales, including in 
vivo and ex vivo, in the same spatial reference framework. 
In an alternative, complementary approach, the Cell Atlas 
Network (BICAN) will extend to the whole human brain the 
approach used in the US Cell Census Network (BICCN), 
undertaking in- depth characterisation of (small- scale) 
components of the mammalian brain, for example, the 
most detailed and comprehensive multi- modal model of 
the primary motor cortex including single- cell transcrip-
tomes and proteomes, chromatin accessibility, DNA 
methylomes, spatially resolved single- cell transcriptomes, 
morphological and electrophysiological properties, and 
cellular resolution input- output mapping ( Callaway  et al., 
 2021).

Based on this concept, brain simulation plays a key 
role in elucidating brain complexity by allowing the test-
ing of hypotheses about the brain’s multi- level organisa-
tion and its functions that control the surrounding body 
(see also next paragraph). Clearly, following this line of 
research, it will become more and more important to 
interconnect simulations executed at different spatial 
le vels (e.g., the EBRAINS simulation engines Gromacs at 
the molecular level, Arbor and NEURON at the cellular 
level, NEST at the systems level, The Virtual Brain at the 
whole- brain level, and the neurorobotics platform at the 
level of the embodied organism and its environment (see 
Brain- derived technologies)); for an overview see Einevoll 
et al. (2019).

Unlike with the real living brain, the embedded simu-
lated brain can be sampled at any point in space and 
time. It will be possible to look at all the processes in 
such a brain (provided those processes are modelled in 
the simulation, based on real- world data and/or on 
 physics/chemistry) and make this observation with simu-
lated measurement devices, for example, multi- array 
electrodes, fMRI scanners. Then, in principle, all kinds of 
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functional hypotheses can be tested in a full- body and 
closed- loop environment; further, it will also be possible 
to build dynamic anatomical atlases, for example, atlases 
that allow for the observation of the changes and pro-
cesses in a brain section under a specific stimulus— in 
real simulation time.

The multiscale complexity of the living brain, the lim-
ited accessibility for measurements, and our incomplete 
understanding of brain processes make the realisation of 
the digital twin approach difficult to say the least. The 
BigBrain as an anatomical model may serve as the scaf-
fold for the integration of twin data in a strict sense 
( Amunts  et al.,  2013), data from other sources such as 
dynamic cellular data and those from experimental pop-
ulation studies, as well as synthetic data simulated by 
models and different brains. Such an approach also 
determines the limitations and ranges of validity of the 
digital twin strategy, which is crucial for the responsible 
use of and subsequent trust in the technology. Neverthe-
less, such data- driven models may represent the closest 
digital representation of a living human brain that is 
achievable at any given point in time. New insights from 
mathematics will be necessary to speed up simulations 
and analyse models ( Lehtimäki  et al.,  2017,  2019,  2020).

Therefrom, the following goals can be derived:

   Develop multi- level brain atlas and high- resolution 
brain models.

   Enable multi- level brain models and simulation.
   Elucidate the mechanisms of cognition and 

behaviour.

7.2. Brain medicine

From such digital twins, personalised twins can be 
derived with the aim of improving diagnostics and ther-
apy for patients in a new and powerful way and therefore 
supporting strategies towards brain health such as that 
recently published by the European Academy of Neurol-
ogy ( Bassetti,  2022). Analogous to cardiac digital twins 
( Gillette  et  al.,  2021), that is, digital replicas of patient 
hearts derived from clinical data that match all available 
clinical observations, human electrophysiological replicas 
have great potential for informing clinical decision- making 
and also for facilitating the cost- effective, safe, and ethi-
cal testing of novel device therapies. Digital twins in med-
icine address a defined spatial scale, with a defined 
granularity, consider a defined time interval, and serve a 
dedicated purpose. An application of the digital twin 
approach for Alzheimer’s disease has been proposed 
recently ( Stefanovski  et al.,  2021), and while careful con-
sideration of data privacy, security, and safety aspects 

will be required, personalised twins might also offer a 
uniquely powerful strategy for treating such conditions.

The Virtual BigBrain (TVB) enables construction of 
individual connectomes based on neuroimaging and EEG 
data of a subject and anatomical data from the BigBrain 
model ( Jirsa  et al.,  2017). The ongoing EPINOV clinical 
trial employing the TVB represents a major step forward 
in this regard; scientists have developed individual mod-
els of the brains of patients undergoing epilepsy surgery 
to guide and predict the best seizure outcome (  Jirsa 
 et al.,  2023;  Proix  et al.,  2017;   Wang  et al.,  2023). Here 
again, the strategy is to combine population data with 
data from an individual brain to develop a Virtual Brain 
model, a twin, that is realistic enough to allow simulation 
of the intervention prior to surgery. Patients with super- 
refractory seizures, that is, seizures which persist over 
periods of anaesthesia, often require prolonged intensive 
care and are at a very high risk of permanent neurological 
damage and death. For such patients, a digital twin might 
be used to examine a vast array of models, with ongoing 
feedback from EEG, responses to drugs and blood ion 
and gas concentrations, all readily available in intensive 
care environments.

The utility of digital brain modelling is illustrated by 
DBS, a well- established surgical therapy for several 
treatment refractory neurological disorders. Currently, 
clinical- use DBS most often implements an “open- loop” 
system, meaning that stimulation is delivered continu-
ously according to fixed parameters. These parameters 
can be adjusted after implantation, but adjustments are 
manual, infrequent, and driven by observation of patients’ 
visible symptoms. In contrast, “closed- loop”, adaptive 
DBS has been developed to overcome limitations of tra-
ditional DBS and to modulate neuronal circuits based on 
clinically relevant biofeedback signals in real- time 
( Marceglia  et al.,  2021). To apply them successfully, how-
ever, requires understanding mechanisms of plasticity 
and learning.

Applications following localised brain lesions, such as 
stroke or traumatic brain injury, would have similar 
requirements. Beyond invasive therapeutic interventions, 
a digital twin would be a powerful tool for predicting the 
consequences of brain lesions, pathophysiology, and 
plasticity, which is sometimes described in terms of com-
putational neuropsychology, namely, characterising 
lesion- deficit relationships in silico, using synthetic 
lesions ( Parr  et al.,  2018). This could significantly change 
our capacity to personalise neurorehabilitation, while 
integrating complex information generated by virtual real-
ity and robot- based therapies together with fine mea-
surements of patients’ responses and progress.

Other applications could employ simulations to test a 
“clinical” simulated population that could be far larger 
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than a real one, therefore providing data amplification by 
creating cohorts of “digital patients”. This could be par-
ticularly interesting for evaluating rare diseases, for 
studying the influence of gender, or for predicting disease 
progression ( Maestú  et  al.,  2021). Moreover, the more 
diverse (and heterogeneous) the sources of data used for 
training, the better the performance of the model on other 
datasets, resulting in good generalisability. This is one of 
the most interesting features provided by federated sys-
tems, which facilitate increasing the diversity of data 
sources (e.g.,  Dayan  et al.,  2021).

Recently, the AlphaFold system developed by Deep-
Mind ( Jumper  et al.,  2021), an application of deep learn-
ing methods, has enabled prediction of protein 3D 
structure. This could be generalised to test the drug- 
protein or drug- protein- system interactions at a systems 
level. Another perspective would evolve from testing the 
effect of drugs in a virtual environment to uncover the 
mechanisms of the drug not only at molecular but also 
systemic levels. Considering that quantum mechanics/
molecular mechanics are computationally highly demand-
ing, such an approach at a systems level would require 
highly scalable tools run on the most powerful supercom-
puters. For example, fine- grained models of local micro-
circuits with molecular or cellular resolution, like those 
constructed and simulated using NEURON and Arbor, 
can be directly used to map the local distribution of some 
molecules (e.g., ion channels, receptors) and then be 
used to simulate the impact of drugs on this system. 
These low- scale models can be tuned according to a 
given pathological condition and then transformed into 
patient- specific mean field models, advancing the preci-
sion of digital twins.

More generally, increased cross- talk between the neu-
roscience fields addressing the human brain as com-
pared to those focusing on non- human brains could work 
synergistically to solve long- standing problems in bio-
medical sciences ( Devinsky  et  al.,  2018). Humans and 
companion animals suffer from overlapping diseases 
(e.g., epilepsy, cancer, obesity). Similar to humans, dogs 
suffer from epilepsy and are subjected to brain scans 
when they are sick. The overlap in diseases and care 
offered by human and veterinary medicine means that 
there are untapped opportunities to test the effectiveness 
of personalised medicine and digital twins in companion 
animals before implementing them in humans.

Finally, it would be expected that brain twins contrib-
ute to “human body twins”. This perspective goes beyond 
merely adding another organ, because it would allow 
modelling the interactions of nervous system activity with 
those of other organs at the systems level, for example, 
heart- brain couplings and linking the brain with stomach 
and intestines. These interactions are pervasive and bidi-

rectional. For example, recent research has identified an 
intrinsic allostatic and interoceptive system in the human 
brain, which includes visceromotor regions that provide 
cortical control of the body’s internal milieu and support 
allostasis ( Kleckner  et al.,  2017). Furthermore, bodily pro-
cesses such as respiration are powerful drivers of rhyth-
mic neural activity ( Tort  et  al.,  2018). Capturing these 
bidirectional interactions would help us understand how 
the brain supports vital bodily functions— and possibly 
how to restore them when they are impaired.

The challenge of bidirectionally and systemically link-
ing multiple single- organ or single- scale digital twins is a 
key element of the European Commission’s roadmap for 
the Virtual Human Twin that is currently under develop-
ment (https://www . edith - csa . eu/).

Therefrom, the following goals can be derived:

   Obtain detailed insights into brain plasticity, learn-
ing, adaption, during the lifespan.

   Accelerate digital brain medicine.
   Explore and model the brain as part of the body.

7.3. Brain- derived technologies

A fundamental challenge is to establish what level of 
granularity in brain modelling, what transitional computa-
tions, and what kind of simulated development are 
required to support the emergence of a variety of cogni-
tive and sensorimotor functions. Models of the human 
brain, simulated in embodied settings, that is, having the 
ability to control virtual or physical bodies interacting  
with realistic virtual or actual physical environments, and 
receiving time- dependent input streams to produce 
behavioural outputs, represent a uniquely attractive plat-
form for investigating the links between brain structure, 
brain activity, and cognitive and functional performance.

How such bottom- up assembly and the emergent 
behaviour of the digital twin system can be evaluated 
against biological data remains an ongoing challenge, 
because typical synthetic development environments do 
not match the natural environment. Yong (2019) argued 
in his feature article “The Human Brain Project Hasn’t 
Lived Up to Its Promise” in The Atlantic12 that “large- 
scale simulations are useful for understanding weather 
and galaxies, but “planetary systems are not about any-
thing other than themselves. A brain is built to be about 
other things.” …. Simulating the tissue is do- able, but 
meaningless.”

12 https://www . theatlantic . com / science / archive / 2019 / 07 / ten - years - human 
- brain - project - simulation - markram - ted - talk / 594493/

https://www.edith-csa.eu/
https://www.theatlantic.com/science/archive/2019/07/ten-years-human-brain-project-simulation-markram-ted-talk/594493/
https://www.theatlantic.com/science/archive/2019/07/ten-years-human-brain-project-simulation-markram-ted-talk/594493/
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The previous paragraphs provide several examples 
where simulation has led to progress in basic neurosci-
ence and brain medicine for well- defined research ques-
tions. Additionally, the HBP from its start aimed to develop 
technologies enabling the study of brain- environment 
interactions ( “Booklet  |  Brain- inspired  intelligent  robotics: 
 The  intersection  of  robotics  and  neuroscience  sciences,” 
 2016). In other words: a simulation of certain processes 
occurring in the brain is embedded in a real or simulated 
body with all its sensors and actuators connected to the 
simulation. In principle, these sensors and actuators can 
just as well be real or simulated or a combination thereof. 
Likewise, this body is embedded in a real or virtual world. 
Once we have these elements, simulated or real, we can 
combine them in any sensible way.

Obviously, this approach is heavily dependent on mod-
els representing the physics of the real world, and it also 
requires sophisticated software that can simulate spatial 
environments in high fidelity and that can provide ade-
quate physics of environments, sensors, and actuators, 
connection to brain simulators, facilities for storing the 
results of simulations, graphical rendering, and the orches-
tration of these complex software modules. All of these 
(co- )simulations can be run at different time scales (ideally 
of course in real- time), in closed- loop or open- loop sce-
narios, and with entities modelled at different granularities.

The neurorobotics platform of the HBP13 is a software 
environment that was designed to perform all these steps, 
run simulations based on diverse sets of data from bio-
logical experiments as well as input from real world 
robots, and integrate machine learning on top of those 
simulations. While this platform was originally conceived 
of for the purpose of designing neurorobots, that is, robots 
that are controlled by biologically inspired models of the 
brain, over time it has evolved into a software environ-
ment that can be used to connect and integrate all types 
of entities ranging from simulated mouse bodies by way 
of sophisticated sensor models to various neuron and 
brain simulators. Today, the neurorobotics platform can 
be considered to be both an environment for robot design, 
and at the same time, an execution platform for neurosci-
entific experiments. It is therefore a powerful vehicle for 
virtualising neuroscience, up to the point where system- 
level in vivo experiments can be replaced with in silico 
experiments that run completely inside this platform.

In addition, the neurorobotics platform allows for train-
ing the “brain” (AI- based controller) of embodied robots 
with real neuroscientific data, even before they are built. It 
is also conceivable that a simulated copy of the real envi-
ronment in which they will be used serves as the reference 
basis for the training, so that they can be pre- trained 

before they are shipped to the end user, who will only 
need to make small adaptations to (emergent) behaviour 
to ensure that the robot performs its tasks in a perfect 
manner. We will refer to approaches following this para-
digm as brain- derived technologies, as they are directly 
based and built on findings from brain research. Impor-
tantly, these findings can be implemented at different lev-
els of organisation. In neuromorphic engineering, the main 
components, that is, biological neurons, are emulated by 
functionally equivalent electrical circuitry to construct 
highly energy- efficient, possibly analogue, processors, 
and sensors. Likewise, the neural models running on 
these systems can be derived from specific types of neu-
rons, microcircuits, or brain regions that have been identi-
fied in biological brains. When connecting these systems 
to robotic embodiments (both simulated and/or physical) 
or to biological organisms, it becomes possible to repli-
cate some aspects of the full closed loop of perception, 
cognition, and action. Modelling can thereby be extended 
to the complete organism and address all aspects of 
complex cognitive processes at the behavioural level. 
Brain- derived technologies are therefore not limited to 
approaches that mimic structural features of the brain but 
can also encompass cognitive models and architectures 
along with their underlying neural dynamics. These tech-
nologies will represent new tools for brain research and 
enable innovations in computing, robotics, and AI.

One field expected to benefit greatly from this approach 
is neurorehabilitation, where realistic models of brain- body 
interactions will be useful in elucidating the neural mecha-
nisms at play ( Rowald  &  Amft,  2022). The combination of 
highly detailed brain models with models of the spinal cord 
and of the musculoskeletal system indeed affords special 
opportunities, such as allowing investigation of the rela-
tionship between neural activity and resulting motor 
behaviour in a detailed, quantitative manner. Personalised 
models could thus be integrated into decision- support 
systems to guide the choice and combination of rehabilita-
tion strategies by a physician or a therapist. They may also 
support breakthrough developments in central nervous 
system (including spinal cord) stimulation technology and 
functional electrical stimulation, improving the efficacy of 
these techniques and expanding their relevance to a 
greater breadth of conditions. A very promising recent 
application reported successful epidural electrical stimula-
tion to treat spinal cord injury ( Rowald  et al.,  2022).

Similarly, the combination of high- fidelity models of 
both the human musculoskeletal and central nervous 
systems is also expected to support the emergence of in 
silico technologies for so- called electroceuticals, that is, 
medical devices that provide neurostimulation for thera-
peutic purposes (e.g., in Parkinson’s disease, epilepsy, 
etc.). There is little doubt that the medical device industry 13 https://www . neurorobotics . net/

https://www.neurorobotics.net/
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would have a fundamental interest in tools guiding their 
product design, generating predictions regarding effi-
cacy, and overall de- risking of the whole product devel-
opment process. With the brain atlases and the multiscale 
brain simulators created by the HBP, it thus seems timely 
to consider the collection and integration of new data 
(e.g., dielectric properties) as a prelude to the develop-
ment of simulation tools and services geared towards the 
evaluation of electroceuticals. Simulating the effect of 
such electroceuticals seems to be overdue, given that 
DBS is already being widely used.

The HBP has supported the SpiNNaker many- core and 
BrainScaleS physical emulation neuromorphic computing 
platforms in establishing the first open neuromorphic com-
puting services and has contributed to the further develop-
ment of these technologies ( Furber  &  Bogdan,  2020). 
Neuromorphic technologies, where both data transfer and 
processing are event, that is, spike- based, provide a multi-
tude of opportunities for edge computing, mobile robotics, 
and neuroprosthetics. Considering current trends in auto-
mation of mobile systems and deployment of “always- on” 
sensor arrays, in particular, neuromorphic devices are 
expected to deliver enhanced, low- latency capacities for 
perception, cognition, and action, while reducing the 
impact of onboard operations on the system’s energy 
consumption ( Cramer  et al.,  2022;  Göltz  et al.,  2021). For 
example, combining spike- driven processing units with 
spike- generating sensors (e.g., dynamic vision sensors, 
dynamic audio sensors) into complete neuromorphic sys-
tems (sensors and processing units) will make it easier to 
perform data fusion and overcome constraints related to 
the heterogeneity of data sources. Advances in the neu-
rocomputational understanding of learning by neuronal 
circuits, especially through synaptic plasticity, will also 
provide new ways of endowing neuromorphic circuits with 
ever- more complex functionalities at a lower training cost 
(e.g., one- shot and continuous on- line learning). In particu-
lar, the restriction to local plasticity constitutes a manifest 
advantage over conventional von Neumann architectures.

The circuitry of analogue neuromorphic processing 
systems such as BrainScaleS emulates the ion flows in 
biological neurons by electrical currents. Unlike traditional 
microprocessors that are based on the classic von Neu-
mann architecture, every silicon neuron is physically incor-
porated into the chip with dedicated components. Like in 
the brain, these neurons exchange information based on 
spikes, which allows for an extremely efficient implemen-
tation and is one of the reasons why neuromorphic sys-
tems are a promising technology for a new generation of 
real- time- capable and extremely energy- efficient comput-
ers. An important consequence of their direct derivation 
from the brain’s structure is that neuromorphic processors 
are typically not well suited for loading external data but 

instead support learning online in real- time. This unique 
feature enables new types of learning rules that do not 
require large data sets but adapt dynamically as required.

Learning rules based on spike timing- dependent plas-
ticity are a remarkable success story of brain- derived 
systems ( Diamond  et  al.,  2019;  Kreutzer  et  al.,  2022). 
They are directly rooted in experimental results and have 
become a cornerstone for research on learning algo-
rithms in both theoretical neuroscience and neuromor-
phic engineering. Importantly, traditional machines have 
also benefited considerably from brain research. One of 
the most prominent examples are arguably convolutional 
neuronal networks, precursors of which have originally 
been derived from the architecture of the visual cortex.

Another important area where basic brain research has 
fostered the emergence of new technologies is that of neu-
romorphic sensors, particularly dynamic vision sensors 
and dynamic audio sensors. The former mimic the func-
tioning of the retina and, like neuromorphic processors, 
encode information with spikes. The characteristics of 
these are completely different from their traditional coun-
terparts. Since they only signal changes rather than cap-
turing full image frames, they can operate extremely 
efficiently, give rise to new types of image processing algo-
rithms, and ideally complement neuromorphic processors.

From a technological perspective, the human brain is 
also the most promising “Rosetta Stone” for the imple-
mentation of advanced cognitive abilities in artificial sys-
tems. Modern artificial agents are characterised by limited 
levels of intelligence, difficulty in generalising beyond pro-
vided training sets, and an often- superficial understand-
ing of their environment. The lack of generalisability 
implies either the necessity for large data sets (the 
resource- intensive big data paradigm), continuous human 
supervision (remotely controlled systems), or extensive, 
rigid mission planners accounting for any allowable occur-
rence (for planetary or ocean exploration). The superficial-
ity of perception and lack of explainability imply a lack of 
robustness of and trust in artificial perception systems, a 
known obstacle to the emergence of, for example, effec-
tive driving automation. To mitigate against such limita-
tions, brain- inspired multi- area model architectures must 
be developed in conjunction with new embodied and 
incremental learning algorithms, with a view to finding 
those that best emulate the functional mechanisms 
underlying human perceptual cognition. Harnessing such 
mechanisms and understanding the emergence of cogni-
tive functions will be essential for creating explainable, 
reliable, and eventually more general AI.

The functional architecture of the brain with its different 
regions is the basis for many types of cognitive architec-
tures that have been defined for technical  systems. This  
is especially true for robotics, where brain- derived 
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approaches are studied extensively. Examples include the 
research on phenomena related to embodiment or the 
development of novel perception and sensing systems 
such as artificial whiskers, inspired by the actual somato-
sensory system in rodents.

Future developments in neural networks for artificial 
intelligence applications will see a convergence between 
mainstream AI and neuromorphic technologies. Multi-
scale brain models can make a critical contribution to the 
construction of advanced robotic controllers. These could 
embed plastic rules and autonomously adapt through 
their interaction with the environment. Thus, basic brain 
science will be key in informing the development of these 
technologies. Moreover, neuromorphic computing might 
help reduce the substantial carbon footprint of large deep 
learning models ( Strubell  et al.,  2019).

Therefrom, the following goals can be derived:

   Bridge the gap between human and machine intel-
ligence.

   Build neuromorphic brain models and bio- inspired 
artificial intelligence.

8. CONCLUSION

An improved understanding of brain function depends on 
a deeper understanding of brain organisation and a bet-
ter appreciation of the fundamental mechanisms— the 
actual biological processes, their relationships, and the 
rules that govern them. This is prerequisite to more effi-
ciently target prevention, therapies, and mechanism- 
based diagnoses. A promising approach for the coming 
decade of digital brain research consists in developing 
digital twins of individual brains that afford personalised 
simulations. Although now feasible, digital twins of the 
brain are still at an early stage and once developed have 
to undergo rigorous testing and validation before they 
can meaningfully address brain disorders and become 
the basis for disruptive new health technologies. There-
fore, we need to understand the computational goals and 
algorithms of the systems and subsystems to be able to 
see the limitations and possibilities of implementation in 
individual cases. Further, brain twins raise ethical ques-
tions that we will need to address in an open dialogue 
with society. Twins can be seen as a kind of endpoint for 
ongoing developments of brain models and analytics.

With this goal in mind, a digital infrastructure that can 
host such digital brain twins may foster progress in under-
standing the rules and refining our digital brain twins to a 
point where they pass validation testing and become 
useful for clinical translation. Further, such an infrastruc-
ture should ideally provide interoperability, information 

security, multi- level data, access to knowledge- based 
computing resources, including high- performance com-
puting and other relevant technologies. EBRAINS is an 
infrastructure that is capable of hosting such develop-
ments. To make that successful, training of younger 
 generations in working with such infrastructures and 
leveraging the potential of new digital tools is key.

Structuring data and knowledge such that they can 
easily be recombined and integrated towards a plethora 
of digital brain twins by the research community— 
together with delivering the powerful technology with 
which complex simulations of these twins can be 
performed— may in itself represent a disruptive technol-
ogy for generating scientific insight.

9. SCIENTIFIC GOALS— A ROADMAP

The “roadmap” below outlines goals within eight intersect-
ing areas of research in the coming decade, each ranging 
from (1) near- term or current work, (2) middle- term, to (3) 
long- term. It is derived from the input provided above.

Develop multi- level brain atlas and high- resolution 
brain models

 1.  Integrate data, from the whole- brain level to cells, 
into a comprehensive, high- resolution brain atlas 
as a basis to get a deeper understanding of gen-
eral principles of brain organisation, to enable the 
prediction of missing features, where the atlas is 
incomplete, and to guide comparative studies 
about interspecies similarities and differences.

 2.  Generate detailed, data- driven, multiscale models 
to study the role of variability in human brain organ-
isation during lifespan, under different conditions.

 3.  Elucidate those aspects of brain organisation and 
structure that are responsible for complex behav-
iors, intelligence, and consciousness.

Enable multi- level brain models and simulation

 1.  Multiscale integration of models, from local bio-
physical properties to whole- brain models, includ-
ing detailed bottom- up and top- down models. 
Models are driven and tuned by data and their pre-
dictions tested.

 2.  Model biologically realistic, complex brain functions 
using multi- scale, whole- brain models— approaching 
digital brain twins for concrete use cases.

 3.  Apply model predictions to larger- scale use cases 
in basic science, medicine, and AI, which, in turn, 
drive model testing and sophistication (“produc-
tive loop”).
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Elucidate the mechanisms of cognition and behaviour

 1.  Develop a coherent framework describing the 
mechanisms of cognitive functions using a multi-
scale perspective, from sensory-  and visuomotor 
to more complex cognitive functions.

 2.  Formulate a coherent framework for language, 
as a uniquely human complex cognitive func-
tion, integrating insights from linguistics and 
neuroscientific research using multi- level brain 
approaches, using development as a window to 
brain specialisation, and providing the backbone 
for development of language models and artifi-
cial intelligence.

 3.  Link concepts of different hypotheses and self- 
consciousness to each other and to mechanisms 
at the cellular, molecular, and genetic levels.

Obtain detailed insights into brain plasticity, learning, 
and adaption, during lifespan

 1.  Identify and integrate the rules of plasticity, learn-
ing, and adaptation, into existing multi- level brain 
models.

 2.  Identify constraints of brain plasticity, and tools to 
modulate it for the benefit of patients.

 3.  Reveal mechanisms of memory consolidation and 
translate this to medicine and technology.

Accelerate digital brain medicine

 1.  Develop and apply personalised models, informed 
by brain atlases and individual patient data, for 
diagnosis and treatment of a broad range of brain 
disorders (e.g., epilepsy, tumours, movement dis-
orders, stroke, psychiatric disorders).

 2.  Construct and apply data- driven models of devel-
opment and aging to brain medicine in different 
age groups (from children to the elderly).

 3.  Develop and apply digital body twins, continually 
amenable to new real- life sensor data, to brain 
medicine (e.g., diagnostics, rehabilitation, inten-
sive care, and surgery).

Explore and model the brain as part of the body

 1.  Link advanced digital brain models to spinal cord 
models based on multi- level atlases and derive 
therefrom new approaches for stimulation.

 2.  Model sensorimotor integration and coordination 
for interaction, task performance, and navigation.

 3.  Integrate somatic and autonomic regulation in 
combined, multi- organ models to construct 

patient twins, which reflect nervous system, 
organ, and body regulatory functions. Develop 
and apply cellular- level body twins, which model 
nervous system, endocrine/hormone, immune 
regulatory, and homeostatic mechanisms.

Bridge the gap between human and machine intelli-
gence

 1.  Simulate complex behaviour using robots interact-
ing with rich environments; promote convergence of 
deep learning AI and event- based (spiking) neural 
networks facilitated by neuromorphic technology; 
democratise and develop complex (brain- inspired) 
AI models, including large language models in an 
open, transparent approach.

 2.  Apply insights into brain mechanisms behind cog-
nitive functions, such as perception and decision- 
making, to emulate learning and developmental 
processes in the fields of AI and neuromorphic 
technology and test the potential role of organoids 
and organoid intelligence (OI).

 3.  Apply fundamentally new concepts and algorithms 
to machine learning and novel engineering appli-
cations (e.g., new materials, artificial life, replacing 
and enhancing brain function).

Neuromorphic brain models and bio- inspired artificial 
intelligence

 1.  Develop training methods for spike- based deep 
neural networks using leaky- integrate- and- fire- 
based neuron models. Integrate complex hard-
ware neuron models in simulation environments.

 2.  Develop hardware and training methods for large- 
scale and highly performant spiking network 
models using complex neuron models.

 3.  Integrate results from plasticity research to develop 
large- scale spiking networks with built- in learning 
capabilities.
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ANNEX 1

White paper: Participatory process and timeline

ANNEX 2

Statements of support
Rafael Yuste: “As a European working in the US, I 

strongly support this initiative, it could help put European 
neuroscience in a leadership position and help European 

countries capitalize on the benefits of working together 
towards the same goal.”

Linda Richards: “Overall, this manuscript presents 
novel ways of moving the field forward and is extremely 
exciting.”

Alexandra A. de Sousa: “As founder of the European 
Network for Brain Evolution Research I strongly support 14 https://zenodo . org / records / 10035197

https://zenodo.org/records/10035197
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this initiative and in particular its reference to the impor-
tance of comparative and evolutionary neuroscience.”

Mu- ming Poo: “Understanding the structure and func-
tion of the human brain and developing effective 
approaches in diagnosis and intervention of brain disor-
ders are both long- term goals of all societies. The tasks 
are enormous, requiring global collaboration in promot-
ing rapid progress and sharing knowledge and technol-
ogy. China Brain Project is now fully funded by the 
Chinese government for the coming decade. Chinese 
scientists, many of them have close ties with scientists in 
the Europe and US, are hoping to establish international 
collaborative projects, and to set up effective mecha-
nisms to facilitate collaboration.”

George Paxinos: “It is exciting to observe the progress 
that has been made in the development of multi- level 
brain atlases. The advanced digital tools that have 
emerged in recent years offer entirely new possibilities for 
studying brain structure in different species.”
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